

PCB relays
Industrial relays
Relay interface modules
Sockets and accessories
Timers
Monitoring relays
Energy meters
Surge protection devices
Industrial thermostat
Modular solid state relays (SSR)
Switch mode power supplies
Filter fan
Light dependent relays
Electronic step relays
Modular contactors
Time switches
Electronic staircase timers
Dimmers
PIR movement detectors
Thermostats and Cronotermostats

Series

Industrial and PCB relays (EMR/SSR)
$30,32,34,36,40,41,43$
44, 45, 46, 55, 56, 60, 62
65, 66, 67, RB, RR, 99

Relay interface modules (EMR/SSR)
Interface modules
$38,39,48,49,4 C, 58,59$
19

Relays with forcibly guided contacts
50, 7S

Power solid state relays (SSR)
77

Monitoring relays
70, 71, 72
Energy meters
7E
Surge Protection Devices (SPD)
7P

Switch mode power supplies
78

Panel thermostats
7T
Filter fans
7F

Movement detectors

| | | 13 | |
| :--- | :--- | :--- | :--- | :--- |
| | | | Electronic step relays |
| Mechanical step relays | | | |

Room thermostats

1C, $1 T$

- 2 Pole changeover contacts Low level switching capability
Subminiature - industry standard DIL package
- Sensitive DC coil - 200 mW
- Wash tight: RT III
- Cadmium Free contact material

Ordering information

Example: 30 series PCB relay, 2 CO (DPDT) - 2 A contacts, 12 V sensitive DC coil.

Technical data

Contact specification

F 30 - Electrical life (AC1) v contact current (125 V)

Note:
The rated current of 2 A corresponds to the limiting continuous current.

Coil specifications

DC coil data-0.2 W sensitive

Nominal voltage U_{N} V	Coil	Operating range		Resistance	Rated coil consumption
5	7.005	3.7	7.5	125	40
6	7.006	4.5	9	180	33
9	7.009	6.7	13.5	405	22
12	7.012	8.4	18	720	16
24	7.024	16.8	36	2,880	8.3
48^{*}	7.048	36	72	10,000	4.8

* Rated power: 0.23 W

R 30 - DC coil operating range v ambient temperature

1-Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Ordering information

Example: 32 series PCB, 1 NO (SPDT-NO) - 6 A contacts, 24 V sensitive DC coil.

Selecting features and options: only combinations in the same row are possible.
Preferred selections for best availability are shown in bold.

Type	Coil version	A	B	C	D
32.21	sens. DC	$\mathbf{4}$	$\mathbf{0 - 3}$	$\mathbf{0}$	$\mathbf{0}$

Technical data

Insulation according to EN 61810-1		
Nominal voltage of supply system V AC	230/400	
Rated insulation voltage V AC	250	
Pollution degree	2	
Insulation between coil and contact set		
Type of insulation	Basic	
Overvoltage category	III	
Rated impulse voltage kV (1.2/50 μ s	5	
Dielectric strength V AC	4,000	
Insulation between open contacts		
Type of disconnection	Micro-disconnection	
Dielectric strength V AC/kV (1.2/50 μ s	1,000/1.5	
Conducted disturbance immunity		
Burst (5 ...50)ns, 5 kHz , on A1-A2	EN 61000-4-4	level 4 (4 kV)
Surge (1.2/50 ss) on A1 - A2 (differential mode)	EN 61000-4-5	level 3 (2 kV)
Other data		
Vibration resistance (5...55) Hz: NO/NC	2/10 (changeover)	2/- (normally open)
	10/10 (changeover)	10/- (normally open)
Shock resistance	20	
Power lost to the environment	0.2	
with rated current W	0.5	
Recommended distance between relays mounted on PCB mm	≥ 5	

Contact specification

F 32 - Electrical life (AC) v contact current

H 32 - Maximum DC1 breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 50 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications

DC coil data- 0.2 W sensitive

Nominal	Coil code	Operating range		Resistance	Rated coil
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	I at U_{N}
V		V	V	Ω	mA
5	7.005	3.9	7.5	125	40
12	7.012	9.4	18	720	16
24	7.024	18.7	36	2,880	8.3
48	7.048	37.4	72	11,520	4

R 32 - DC coil operating range vambient temperature

1-Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Features

Ultra-slim 1 Pole - 6 A relay
Printed circuit mount - direct or via PCB socket

35 mm rail mount

- via screw, screwless or push-in terminal sockets
- 1 Pole changeover contacts or

1 Pole normally open contact

- Ulitra slim, 5 mm , package
- Sensitive DC coil - 170 mW (Dual AC/DC coil drive possible using 93 series sockets)
- UL Listing (certain relay/socket combinations)
- Cadmium Free contact materials
- $8 / 8 \mathrm{~mm}$ clearance/creepage distance
- $6 \mathrm{kV}(1.2 / 50 \mathrm{\mu s}$) insulation, coil-contacts

For Ul ratings see:
"General technical information" page V
For outline drawing see page 5
Contact specification
Contact configuration

Rated current/Maximum peak current A	6/10
Rated voltage/Maximum switching voltage V AC	250/400
Rated load AC1 VA	1,500
Rated load AC15 (230 V AC) VA	300
	0.185
Breaking capacity DC $1: 30 / 110 / 220 \mathrm{~V}$ A	6/0.2/0.12
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	500 (12/10)
Standard contact material	AgNi
Coil specification	
Nominal voltage (U_{N}) V AC ($50 / 60 \mathrm{~Hz}$)	-
V DC	5-12-24-48-60
Rated power AC/DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$	-/0.17
Operating range AC	-
DC	(0.7...1.5) U_{N}
Holding voltage AC/DC	$-/ 0.4 U_{N}$
Must drop-out voltage AC/DC	$-/ 0.05 U_{N}$
Technical data	
Mechanical life AC/DC cycles	$-/ 10 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$60 \cdot 10^{3}$
Operate/release time ms	5/3
Insulation between coil and contacts (1.2/50 ss) kV	$6(8 \mathrm{~mm})$
Dielectric strength between open contacts V AC	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$
Environmental protection	RT II

Approvals (according to type)

- 5 mm wide
- Low coil power
- PCB or 93 series sockets

Copper side view
$1 \mathrm{CO}($ SPDT $)$
A

A

Features

Ultra-slim - Solid State Relays

A Printed circuit mount

- direct or via PCB socket

35 mm rail mount

- via screw, screwless or push-in terminal sockets
- Single circuit output switching options
- 2 A 24 V DC
- 0.1 A 48 VDC
- 2 A 240 V AC
- Silent, high speed switching with long electrical life
- Ultra slim, 5 mm , package
- Sensitive DC Input circuits (Dual AC/DC input drive possible using 93 series sockets)
- UL Listing (certain relay/socket combinations)
- Wash tight: RT III
- 2,500 V insulation, input-output

For outline drawing see page 5	Copper side view				 Copper side view		 Copper side view			
Output circuit										
Contact configuration	1 NO (SPST-NO)				$1 \mathrm{NO}($ SPST-NO)		1 NO (SPST-NO)			
Rated current/Maximum peak current (10 ms) A	2/20				$0.1 / 0.5$		2/40			
Rated voltage/Maximum blocking voltage V	(24/33)DC				(48/60)DC		(240/-)AC			
Switching voltage range V	(1.5...24)DC				(1.5...48)DC		(12...275)AC			
Repetitive peak off-state voltage $\quad \mathrm{V}_{\mathrm{pk}}$	-				-		600			
Minimum switching current mA	1				0.05		22			
Max. "OFF-state" leakage current mA	0.001				0.001		1.5			
Max. "ON-state" voltage drop V	0.12				1		1.6			
Input circuit										
Nominal voltage V DC	5	12	24	60	24	60	5	12	24	60
Rated power AC/DC W	0.035	0.087	0.17	0.18	0.17	0.18	0.060	0.087	0.17	0.18
Operating range V DC	3.5... 12	8... 17	16... 30	35... 72	16... 30	35... 72	3.5... 10	8... 17	16... 30	35... 72
Control current mA	7	7.2	7	3	7	3	12	7.2	7	3
Release voltage V DC	1	4	10	20	10	20	1	4	10	20
Impedance $\quad \Omega$	715	1,940	3,200	21,300	3,200	21,300	416	1,940	3,200	21,300
Technical data										
Operate/release time ms	0.1/0.6*				0.04/0.6*		12/12*			
Dielectric strength between input/output V	2,500				2,500		2,500			
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-20 \ldots+60$				$-20 \ldots+60$		$-20 \ldots+60$			
Environmental protection	RT III				RT III		RT III			
Approvals (according to type)	CE ANCE EH[PG cTI ${ }_{\text {US }}$						CEEH[PG cT ${ }_{\text {US }}$			

[^0]
Ordering information

Electromechanical relay (EMR)
Example: 34 series slim electromechanical relay, 1 CO (SPDT) 6 A contacts, 24 V sensitive DC coil.

7 = Sensitive DC

Coil voltage

See coil specifications

Selecting features and options: only combinations in the same row are possible.
Preferred selections for best availability are shown in bold.

Type	Coil version	A	B	C	D
34.51	sens. DC	$\mathbf{0}-4-5$	$\mathbf{0}-3$	$\mathbf{1}$	$\mathbf{0}$
34.51	sens. DC	$0-4-5$	0	1	9

Solid state relay (SSR)
Example: 34 series SSR relay, 2 A output, 24 V DC supply.

Flat pack version

[^1]

34 Series - Ulira-Slim PCB relays

Electromechanical relay

Technical data

Insulation according to EN 61810-1		
Nominal voltage of supply system V AC	230/400	
Rated insulation voltage V AC	250	400
Pollution degree	3	2
Insulation between coil and contact set		
Type of insulation	Reinforced	
Overvoltage category	III	
Rated impulse voltage kV (1.2/50 s)	6	
Dielectric strength V AC	4,000	
Insulation between open contacts		
Type of disconnection	Micro-disconnection	
Dielectric strength V AC/kV (1.2/50 μ s)	1,000/1.5	
Conducted disturbance immunity		
Burst ($5 \ldots .50$)ns, 5 kHz , on A1-A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s}$) on A1-A2 (differential mode)	EN 61000-4-5	level 3 (2 kV)
Other data		
Bounce time: NO/NC ms	1/6	
Vibration resistance (5..55) Hz: NO/NC g	10/5	
Shock resistance g g	20/14	
Power lost to the environment without contact current W	0.2	
with rated current W	0.5	
Recommended distance between relays mounted on PCB mm	≥ 5	

Contact specification

F 34 - Electrical life (AC) v contact current

Coil specifications

DC coil data

Nominal	Coil code	Operating range		Resistance	Rated coil
U_{N}		$U_{\text {min }}$	$U_{\text {max }}$	R	I at U_{N}
V		V	V	Ω	mA
5	7.005	3.5	7.5	130	38.4
12	7.012	8.4	18	840	14.2
24	7.024	16.8	36	3,350	7.1
48	7.048	33.6	72	12,300	3.9
60	7.060	42	90	19,700	3

H 34 - Maximum DC1 breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 60.10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

R 34 - DC coil operating range v ambient temperature

1-Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Solid state relay

Technical data

EMC specifications		Reference standard	
Electrostatic discharge	contact discharge	EN 61000-4-2	4 kV
	air discharge	EN 61000-4-2	8 kV
Fast transients on supply terminals (burst $5 / 50 \mathrm{~ns}, 5 \mathrm{kHz}$)		EN 61000-4-4	2 kV
Voltage pulses on supply	common mode	EN 61000-4-5	0.5 kV
terminals (surge 1.2/50 s)	differential mode	EN 61000-4-5	0.5 kV
Other data			
Power lost to the environment	without output current	W	0.17
	with rated current	W	0.4

Input specification
Input data - DC types

Nominal voltage U_{N}	Input code	Operating range		Release voltage	Impedance	Control current I at U_{N}
		$\mathrm{U}_{\text {min }}$	$U_{\text {max }}$			
V		V	V	V	Ω	mA
5	7.005	3.5	12 (10*)	1	715 (416*)	7 (12*)
12	7.012	8	17	4	1,940	7.2
24	7.024	16	30	10	3,200	7
60	7.060	35	72	20	21,300	3

* AC Output version.

Output specification

L 34 - Output current v ambient temperature

SSR - 2 A DC \& AC output types

L 34 - Output current v ambient temperature

SSR - 0.1 A DC output types

Outline drawings

Type 34.51

Type 34.81

Screw terminal socket 35 mm rail mounting (EN 60715)
Common features

- Space saving 6.2 mm wide
- Connections for 16 -way jumper link
- Integral coil indication and protection circuit
- Secure retention and easy ejection by plastic clip
- Dual screw head (blade+cross) terminals

For technical data and supply versions, refer to the MasterINTERFACE 39 Series - "Relay interface module"
Electromechanical Relay - EMR
93.62

Supply voltage	Relay type	Socket type (reference with the 39 Series)				
		$\begin{gathered} \text { MasterBASIC } \\ (39.11 \ldots . .) \end{gathered}$	$\begin{aligned} & \text { MasterPLUS } \\ & (39.31 \ldots . .) \end{aligned}$	MasterINPUT $(39.41 \ldots . .)$	MasterOUTPUT $(39.21 \ldots . .)$	MasterTIMER $(39.81 \ldots . .)$
6 V AC/DC	34.51.7.005.xx10	93.61.7.024	93.63.7.024	93.64.7.024	93.62.7.024	-
$12 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.012.xx10	93.61.7.024	93.63.7.024	93.64.7.024	93.62.7.024	93.68.0.024
$24 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.024.xx10	93.61.7.024	93.63.7.024	93.64.7.024	93.62.7.024	93.68.0.024
$60 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.060.xx10	-	93.63.7.060	-	-	-
(110...125)V AC/DC*	34.51.7.060.xx10	-	93.63.3.125	-	-	-
(220...240)V AC*	34.51.7.060.xx10	-	93.63.3.230	-	-	-
(110...125)V AC/DC	34.51.7.060.xx10	93.61.0.125	93.63.0.125	93.64.0.125	93.62.0.125	-
(24...240)V AC/DC	34.51.7.024.xx10	-	93.63.0.240	-	-	-
(220...240)V AC	34.51.7.060.xx10	93.61.8.230	93.63.8.230	93.64.8.230	93.62.8.230	-
(110...125) V DC	34.51.7.060.xx10	-	93.63.7.125	-	-	-
220 V DC	34.51.7.060.xx10	-	93.63.7.220	-	-	-

* Leakage current suppression

Solid State Relay - SSR

Supply voltage	Relay type	Socket type (reference with the 39 Series)				
		MasterBASIC $(39.10 \ldots . .)$	MasterPLUS $(39.30 \ldots . .)$	MasterINPUT $(39.40 \ldots . .)$	MasterOUTPUT $(39.20 \ldots . .)$	MasterTIMER $(39.80 \ldots . .)$
$12 \mathrm{~V} \mathrm{AC/DC}$	34.81.7.012.xxxx	-	-	-	-	93.68.0.024
24 V AC/DC	34.81.7.024.xxxx	-	93.63.0.024	93.64.0.024	-	93.68.0.024
(110...125)V AC/DC*	34.81.7.060.xxxx	-	93.63.3.125	-	-	-
(220...240)V AC*	34.81.7.060.xxxx	-	93.63.3.230	-	-	-
(110...125)V AC/DC	34.81.7.060.xxxx	93.61.0.125	93.63.0.125	93.64.0.125	93.62.0.125	-
(24...240)V AC/DC	34.81.7.024.xxxx	-	93.63.0.240	-	-	-
(220...240)V AC	34.81.7.060.xxxx	93.61.8.230	93.63.8.230	93.64.8.230	93.62.8.230	-
6 V DC	34.81.7.005.xxxx	93.61.7.024	93.63.7.024	93.64.7.024	93.62.7.024	-
12 V DC	34.81.7.012.xxxx	93.61.7.024	93.63.7.024	93.64.7.024	93.62.7.024	-
24 V DC	34.81.7.024.xxxx	93.61.7.024	93.63.7.024	93.64.7.024	93.62.7.024	-
60 V DC	34.81.7.060.xxxx	-	93.63.7.060	-	-	-
(110...125) V DC	34.81.7.060.xxxx	-	93.63.7.125	-	-	-
220 V DC	34.81.7.060.xxxx	-	93.63.7.220	-	-	-

* Leakage current suppression

Accessories		
16-way jumper link		093.16 (blue), 093.16.0 (black), 093.16.1 (red)
Dual-purpose plastic separator		093.60
Sheet of marker tags		060.72
Technical data		
Rated values		$6 \mathrm{~A}-250 \mathrm{~V}$
Dielectric strength		$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
Protection category		IP20
Ambient temperature	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Screw torque	Nm	0.5
Wire strip length	mm	10
Max wire size		Solid wire and stranded wire
	mm^{2}	$1 \times(0.2 \ldots 2.5) / 2 \times 1.5$
	AWG	$1 \times(24 \ldots 14) / 2 \times 16$

Push-In terminal socket 35 mm rail mounting (EN 60715)

Common features

- Space saving 6.2 mm wide
- Connections for 16 -way jumper link
- Terminal doubler 093.62
- Integral coil indication and protection circuit
- Secure retention and easy ejection by plastic clip

For technical data and supply versions, refer to the MasterINTERFACE 39 Series - "Relay interface module"
Electromechanical Relay - EMR

Supply voltage
6 V AC/DC
$12 \mathrm{~V} \mathrm{AC/DC}$
24 V AC/DC
$60 \mathrm{~V} \mathrm{AC/DC}$
(110...125)V AC/DC*
(220...240)V AC*
(110...125)V AC/DC
(24...240)V AC/DC
(220...240)V AC
(110...125) V DC
220 V DC

Relay type	
34.51.7.005.xx 10	
34.51.7.012.xx10	
34.51.7.024.xx10	
34.51.7.060.xx10	
34.51.7.060.xx10	
34.51.7.060.xx10	
34.51.7.060.xx10	
34.51.7.024.xx10	
34.51.7.060.xx10	
34.51.7.060.xx10	
34.51.7.060.xx10	

Socket type (reference with the 39 Series)				
MasterBASIC	MasterPLUS	MasterINPUT	MasterOUTPUT	MasterTIMER
$(39.01 \ldots)$.	$(39.61 \ldots .)$.	$(39.71 \ldots)$.	$(39.51 \ldots .)$.	$(39.91 \ldots)$.
93.60 .7 .024	93.66 .7 .024	93.67 .7 .024	93.65 .7 .024	-
93.60 .7 .024	93.66 .7 .024	93.67 .7 .024	93.65 .7 .024	93.69 .0 .024
93.60 .7 .024	93.66 .7 .024	93.67 .7 .024	93.65 .7 .024	93.69 .0 .024
-	93.66 .7 .060	-	-	-
-	93.66 .3 .125	-	-	-
-	93.66 .3 .230	-	-	-
93.60 .0 .125	93.66 .0 .125	93.67 .0 .125	93.65 .0 .125	-
-	93.66 .0 .240	-	-	-
93.60 .8 .230	93.66 .8 .230	93.67 .8 .230	93.65 .8 .230	-
-	93.66 .7 .125	-	-	-
-	93.66 .7 .220	-	-	-

* Leakage current suppression

Solid State Relay - SSR

Supply voltage	Relay type	Socket type (reference with the 39 Series)				
		MasterBASIC $(39.00 \ldots . .)$	$\begin{aligned} & \text { MasterPLUS } \\ & (39.60 \ldots . .) \end{aligned}$	MasterINPUT $(39.70 \ldots . .)$	MasterOUTPUT $(39.50 \ldots . .)$	MasterTIMER $(39.90 \ldots . .)$
$12 \mathrm{~V} \mathrm{AC/DC}$	34.81.7.012.xxxx	-	-	-	-	93.69.0.024
24 V AC/DC	34.81.7.024.xxxx	-	93.66.0.024	93.67.0.024	-	93.69.0.024
(110...125)V AC/DC*	34.81.7.060.xxxx	-	93.66 .3 .125	-	-	-
(220...240)V AC*	34.81.7.060.xxxx	-	93.66.3.230	-	-	-
(110...125)V AC/DC	34.81.7.060.xxxx	93.60.0.125	93.66.0.125	93.67.0.125	93.65.0.125	-
(24...240)V AC/DC	34.81.7.024.xxxx	-	93.66.0.240	-	-	-
(220...240)V AC	34.81.7.060.xxxx	93.60.8.230	93.66.8.230	93.67.8.230	93.65.8.230	-
6 V DC	34.81.7.005.xxxx	93.60.7.024	93.66.7.024	93.67.7.024	93.65.7.024	-
12 V DC	34.81.7.012.xxxx	93.60.7.024	93.66.7.024	93.67.7.024	93.65.7.024	-
24 V DC	34.81.7.024.xxxx	93.60.7.024	93.66.7.024	93.67.7.024	93.65.7.024	-
60 V DC	34.81.7.060.xxxx	-	93.66.7.060	-	-	-
(110...125) V DC	34.81.7.060.xxxx	-	93.66.7.125	-	-	-
220 V DC	34.81.7.060.xxxx	-	93.66.7.220	-	-	-

* Leakage current suppression

Accessories

16-way jumper link		093.16 (blue), 093.16.0 (black), 093.16.1 (red)
Dual-purpose plastic separator		093.60
Terminal doubler		093.62
Sheet of marker tags		060.72
Technical data		
Rated values		$6 \mathrm{~A}-250 \mathrm{~V}$
Dielectric strength		$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
Protection category		IP20
Ambient temperature	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Wire strip length	mm	8
Max wire size		Solid wire and stranded wire
	mm^{2}	$1 \times(0.2 \ldots 2.5)$
	AWG	$1 \times(24 \ldots 14)$

Screw less terminal socket 35 mm rail mounting (EN 60715)

Common features

- Space saving 6.2 mm wide
- Connections for 20 -way jumper link
- Integral coil indication and protection circuit
- Secure retention and easy ejection by plastic clip

For technical data and supply versions, refer to the $\mathbf{3 8}$ Series - "Relay interface module"
Approvals (according to type):

(\in © FH © © (14)

RINA ${ }_{c} \mathbf{N D}_{u S}^{\circ}$
Electromechanical Relay - EMR and Solid State Relay - SSR

Supply voltage	Relay type (reference with the 38 Series)		Socket type
	Electromechnanical relay - EMR ($38.61 \ldots$.)	Solid State Relay - SSR (38.81.....)	
$12 \mathrm{VAC} / \mathrm{DC}$	34.51.7.012.xx10	-	93.51.0.024
24 V AC/DC	34.51.7.024.xx10	-	93.51 .0 .024
(110...125)V AC/DC	34.51.7.060.xx10	34.81.7.060.xxxx	93.51 .0 .125
(220...240)V AC/DC	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.0.240
(110...125)V AC/DC *	34.51.7.060.xx10	34.81.7.060.xxxx	93.51 .3 .125
(220...240)V AC *	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.3.240
(220...240)V AC	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.8.240
12 V DC	34.51.7.012.xx10	34.81.7.012.xxxx	93.51.7.024
24 V DC	34.51.7.024.xx10	34.81.7.024.xxxx	93.51.7.024
60 V DC	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.7.060

* Leakage current suppression

Accessories		
20-way jumper link		093.20
Plastic separator		093.01
Sheet of marker tags		093.64
Technical data		
Rated values		$6 \mathrm{~A}-250 \mathrm{~V}$
Dielectric strength		$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
Protection category		IP20
Ambient temperature ($\mathrm{U}_{\mathrm{N}} \leq 60 \mathrm{~V} />60 \mathrm{~V}$)	${ }^{\circ} \mathrm{C}$	-40 ... $+70 /-40 \ldots+55$
Wire strip length	mm	10
Max wire size		Solid wire and stranded wire
	mm^{2}	$1 \times 2.5 / 2 \times 1.5$
	AWG	$1 \times 14 / 2 \times 16$

Approvals (according to type):

PCB socket with retaining and release clip	$\mathbf{9 3 . 1 1}$ (blue)	
For relay type	$34.51,34.81$	
Technical data	$6 \mathrm{~A}-250 \mathrm{~V}$	
Rated values	$\geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts	
Dielectric strength	IP 20	
Protection category	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Ambient temperature		

Retaining and release clip use:

Copper side view

Ordering information

Example: 36 series miniature PCB relay, 1 CO (SPDT) - 10 A contacts, 12 V DC coil.

Selecting features and options: only combinations in the same row are possible.
Preferred selections for best availability are shown in bold.

Type	Coil version	A	B	C	D
36.11	DC	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$

Technical data

Insulation according to EN 61810-1	
Nominal voltage of supply system V AC	230/400
Rated insulation voltage V AC	250
Pollution degree	2
Insulation between coil and contact set	
Type of insulation	Basic
Overvoltage category	II
Rated impulse voltage kV (1.2/50 $\mu \mathrm{s}$)	4
Dielectric strength V AC	2,500
Insulation between open contacts	
Type of disconnection	Micro-disconnection
Dielectric strength V AC/kV (1.2/50 μ s)	750/1.5
Other data	
Shock resistance g	10
Bounce time: $\mathrm{NO} / \mathrm{NC} \mathrm{ms}$	1/6
Vibration resistance ($5 \ldots .55 \mathrm{~Hz}$): NO/NC g	14/8
Power lost to the environment	
without contact current W	0.4
with rated current W	1.4
Recommended distance between relays mounted on PCB mm	≥ 5

Contact specification

F 36 - Electrical life (AC) v contact current

H 36 - Maximum DCl breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 50 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications

DC coil data

Nominal voltage U_{N} V	Coil code	Operating range		Resistance R	Rated coil consumption I at U_{N}
		$U_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
		V	V	Ω	mA
3	9.003	2.2	3.9	25	120
5	9.005	3.7	6.5	70	72
6	9.006	4.5	7.8	100	60
9	9.009	6.7	11.7	225	40
12	9.012	9	15.6	400	30
18	9.018	13.5	23.4	900	20
24	9.024	18	31.2	1,600	15
48	9.048	36	62.4	6,400	7.5

R 36-DC coil operating range vambient temperature

1-Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Features

1 \& 2 Pole relay range

40.31-1 Pole 10 A (3.5 mm pin pitch)
40.51-1 Pole $10 \mathrm{~A}(5 \mathrm{~mm}$ pin pitch)
40.52-2 Pole $8 \mathrm{~A}(5 \mathrm{~mm}$ pin pitch)

PCB mount

- direct or via PCB socket 35 mm rail mount - via screw and screwless sockets
- DC coils (standard or sensitive) \& AC coils
- Cadmium Free contact material
- $8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ isolation, coil-contacts
- UL Listing (certain relay/socket combinations)
- Flux proof: RT II standard, (RT III option)
- 95 series sockets
- Coil EMC suppression
- Timer accessories 86 series

For UL ratings see:
"General technical information" page V
For outline drawing see page 10
Contact specification

Rated current/Maximum peak current	A
Rated voltage/Maximum switching voltage V AC	
Rated load ACl	VA
Rated load ACl 5 (230 V AC)	VA
Single phase motor rating (230 V AC)	kW
Breaking capacity DC1: 30/110/220 V	A
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard	

Standard contact

Nominal voltage $\left(U_{\mathrm{N}}\right)$	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
	V DC
Rated power AC/DC/sens. DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W} / \mathrm{W}$
Operating range	AC
	$\mathrm{DC} /$ sens. DC
Holding voltage	$\mathrm{AC} / \mathrm{DC}$
Must drop-out voltage	$\mathrm{AC} / \mathrm{DC}$
Technical data	
Mechanical life	cycles
Electrical life at rated load ACl	cycles

$$
\begin{aligned}
& \text { - Pole } 10 \mathrm{~A} \\
& \text { - PCB or } 95 \text { series sockets }
\end{aligned}
$$

40.52

- 5 mm contact pin pitch - 2 Pole 8 A - PCB or 95 series sockets

[^2]
Features

40.61-1 Pole 16 A (5 mm pin pitch) 40.xx. 6 - Bistable versions of the 40.31, 40.51, 40.52 \& 40.61 relays

PCB mount

- direct or via PCB socket

35 mm rail mount

- via screw and screwless sockets
- DC coils \& AC coils
- Cadmium Free option available
- $8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ isolation, coil-contacts
- UL Listing
(certain 40.61 relay/socket combinations)
- Flux proof: RT II standard, (RT III option)
- 95 series sockets
- Coil EMC suppression
- Timer accessories 86 series

For Ul ratings see:
"General technical information" page V
For outline drawing see page 10

- 5 mm contact pin pitch
- 1 Pole 16 A
- PCB or 95 series sockets
\square

Copper side view
Pin length 5.3 mm for PCB or sockets
(CC) (al (D) EH[©

* With the AgSnO_{2} material the maximum peak current is 120 A - 5 ms on normally open contact.
*** Nominal voltage (U_{N}):
5-6-7-9-12-14-18-21. 24-28-36-48-60-90-110-125 V DC

Features

1 Pole relay range
40.31-1 Pole 12 A (3.5 mm pin pitch)
40.61-1 Pole 16 A (5 mm pin pitch)

- Pin length 3.5 mm for pcb mount
- Pin length 5.3 mm as Plug-in relay
- DC standard (0.65 W) or sensitive (0.5 W) coils available
- Cadmium Free contact material available
- $6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ isolation coil-contacts
- 8 mm creepage and clearance distances between coil and contacts
- Meets EN 60335-1 glow wire requirements
- Flux proof: RT II standard or wash tight RT III
- AC inductive load rating (related to AC15 utilisation category) 4 A 250 V approved according to EN 61810-1:2008 (Annex B tables B1, B2, B3)
mounted on sockets $\leq 10 \mathrm{~A}$
For outline drawing see page 10

Contact specification		
Contact configuration	1 CO (SPDT)	1 CO (SPDT)
Rated current/Maximum peak current A	12*/20	16/30
Rated voltage/Maximum switching voltage V AC	250/400	250/400
Rated load AC1 VA	3,000	4,000
Rated load AC15 (230 V AC) VA	1,000	1,000
Single phase motor rating (230 V AC) kW	0.55	0.55
Breaking capacity DC1: 30/110/220 V A	12/0.3/0.12	16/0.3/0.12
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (5/5)	500 (10/5)
Standard contact material	AgNi	AgCdO
Coil specification		
Nominal voltage (U_{N}) V AC $(50 / 60 \mathrm{~Hz})$	-	-
V DC	12-24	12-24
Rated power DC/sensitive DC W	0.65/0.5	0.65/0.5
Operating range AC	-	-
DC/sensitive DC	$(0.73 \ldots 1.5) U_{N} /(0.73 \ldots 1.5) U_{N}$	$(0.73 \ldots 1.5) \mathrm{U}_{\mathrm{N}} /(0.8 \ldots 1.5) \mathrm{U}_{\mathrm{N}}$
Holding voltage DC	$0.4 U_{N}$	$0.4 U_{N}$
Must drop-out voltage DC	$0.1 U_{N}$	$0.1 U_{N}$
Technical data		
Mechanical life cycles	$10 \cdot 10^{6}$	$10 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$200 \cdot 10^{3}$	$100 \cdot 10^{3}$
Operate/release time ms	7/3 (10/3 sensitive)	7/3 (10/3 sensitive)
Insulation between coil and contacts (1.2/50 $\mathrm{\mu s}$) kV	6 (8 mm)	6 (8 mm)
Dielectric strength between open contacts V AC	1,000	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$	$-40 \ldots+85$
Environmental protection	RT II**	RT II**
Approvals (according to type)	(cc) © EH[(H)	

[^3]
Features

1 Pole relay range

- 1 Pole 10 A (Flat pack)
- DC coils
- Cadmium Free option available
- $8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ isolation, coil-contacts

For Ul ratings see:
"General technical information" page V
For outline drawing see page 10
Contact specification
Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC
Rated load AC1 VA
Rated load AC15 (230 V AC) VA
Single phase motor rating (230 V AC) kW
Breaking capacity DC 1:30/110/220 V A
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Standard contact material	AgCdO
Coil specification	
Nominal voltage (U_{N})	-
	6-12-24-48-60
Rated power AC/DC/sens. DC VA (50 Hz)/W/W	-/-/0.5
Operating range	-
	$-/(0.73 \ldots 1.75) U_{N}$
Holding voltage AC/DC	$-/ 0.4 U_{N}$
Must drop-out voltage AC/DC	$-/ 0.1 U_{N}$
Technical data	
Mechanical life cycles	$20 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	200. 103
Operate/release time ms	12/4
Insulation between coil and contacts (1.2/50 s) kV	6 (8 mm)
Dielectric strength between open contacts V AC	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Environmental protection	RT I
Approvals (according to type)	

Ordering information

Example: 40 series PCB relay, 2 CO (DPDT), $230 \mathrm{~V} \mathrm{AC} \mathrm{coil}$.

1 of
$1=1$ pole
$2=2$ pole
Coil version
$6=$ AC/DC bistable
7 = Sensitive DC, 0.5 W
$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$
9 = Standard DC, 0.65 W

Coil voltage

See coil specifications

Selecting features and options: only combinations in the same row are possible.
Preferred selections for best availability are shown in bold.

Terminal pin	Type	Coil version	A	B	C	D
PCB relay, pin length 3.5 mm	40.11	Sensitive DC	$2(\mathrm{AgCdO})-4\left(\mathrm{AgSnO}_{2}\right)$	0	0	0
	40.31*	Standard DC/sensitive DC	1 (AgNi)	0-3	2	0-1
	40.61*	Standard DC/sensitive DC	1 (AgNi) - 2 (AgCdO)	0-3	2	0-1
PCB/Plug-in relay, pin length 5.3 mm	40.31 */51	AC/sensitive DC	0 (AgNi) - 2 (AgCdO) - 5 ($\mathrm{AgNi}+\mathrm{Au})$	0-3	0	0-1
	40.31 */51	Standard DC	$\mathbf{0}(\mathrm{AgNi})-2(\mathrm{AgCdO})-5(\mathrm{AgNi}+\mathrm{Au})$	0-3	0	0-1-3
	40.52	AC/sensitive DC	0 (AgNi) - 2 (AgCdO) - $5(\mathrm{AgNi}+\mathrm{Au})$	0-3	0	0-1
	40.52	Standard DC	0 (AgNi) - 2 (AgCdO) - $5(\mathrm{AgNi}+\mathrm{Au})$	0-3	0	0-1-3
	40.61*	AC/sensitive DC	$\mathbf{0}(\mathrm{AgCdO})-4\left(\mathrm{AgSnO}_{2}\right)$	0-3	0	0-1
	40.61*	Standard DC	$0(\mathrm{AgCdO})-4\left(\mathrm{AgSnO}_{2}\right)$	0-3	0	0-1-3
	40.31/51/52	Bistable	0 (AgNi)	0	0	0
	40.61	Bistable	0 (AgCdO)	0	0	0

$\begin{gathered} 40.31 \\ 1 \text { pole } 10 \mathrm{~A} \end{gathered}$	40.31 New 1 pole 12 A	$\begin{gathered} 40.61 \\ 1 \text { pole } 16 \mathrm{~A} \end{gathered}$	$\begin{gathered} 40.61 \\ \text { New } \\ 1 \text { pole } 16 \text { A } \end{gathered}$
3.5 mm pin pitch For socket** or pcb mount pin length 5.3 mm		5 mm pin pitch For socket or pcb mount pin length 5.3 mm	

* As the result of new production lines and increased production capacity, the design/specification of the DC versions with standard contact material is being changed to align with PCB relay versions $40 . x 1 \ldots 20$. For full technical data refer to page 3 .
** For 40.31 relays mounted on sockets, the maximum rated current must be limited to 10 A .

Technical data

Contact specification

F 40 - Electrical life (AC) v contact current Types 40.31/51/61

* limit for 40.31 , see page 3
** Inductive load - AC15 for 40.31/61, see page 3

F 40 - Electrical life (AC) v contact current
Type 40.11

F 40 - Electrical life (AC) v contact current Type 40.52

H 40 - Maximum DCl breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications

DC coil data - 0.65 W standard (types 40.31/51/52/61)

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at U_{N}
		$\mathrm{U}_{\min }$	$\mathrm{U}_{\text {max }}$		
V		V	V	Ω	mA
5	9.005	3.65	7.5	38	130
6	9.006	4.4	9	55	109
7	9.007	5.1	10.5	75	94
9	9.009	6.6	13.5	125	72
12	9.012	8.8	18	220	55
14	9.014	10.2	21	300	47
18	9.018	13.1	27	500	36
21	9.021	15.3	31.5	700	30
24	9.024	17.5	36	900	27
28	9.028	20.5	42	1,200	23
36	9.036	26.3	54	2,000	18
48	9.048	35	72	3,500	14
60	9.060	43.8	90	5,500	11
90	9.090	65.7	135	12,500	7.2
110	9.110	80.3	165	18,000	6.2
125	9.125	91.2	188	23,500	5.3

DC coil data-0.5 W sensitive (type 40.11)

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at U_{N}
		$U_{\text {min }}$	$U_{\text {max }}$		
V		V	V	Ω	mA
6	7.006	4.4	10.5	75	80
12	7.012	8.8	21	300	40
24	7.024	17.5	42	1,200	20
48	7.048	35	84	4,600	10.4
60	7.060	43.8	105	7,200	8.3

AC coil data (types 40.31/51/52/61)

| $\begin{array}{c}\text { Nominal } \\ \text { voltage } \\ U_{N}\end{array}$ | $\begin{array}{c}\text { Coil } \\ \text { code }\end{array}$ | | $\begin{array}{c}\text { Operating range }\end{array}$ | | Resistance |
| :---: | :---: | :---: | :---: | ---: | :---: | \(\left.\begin{array}{c}Rated coil

consumption\end{array}\right]\)

DC coil data - 0.5 W sensitive (types 40.31/51/52/61)

Nominal voltage U_{N}	Coil	Operating range code		Resistance $\mathrm{U}_{\text {min }}{ }^{*}$	
5	$\mathrm{U}_{\text {max }}$	R	Rated coil consumption I at U_{N}		
5	7.005	3.7	7.5	50	100
6	7.006	4.4	9	75	80
7	7.007	5.1	10.5	100	70
9	7.009	6.6	13.5	160	56
12	7.012	8.8	18	288	42
14	7.014	10.2	21	400	35
18	7.018	13.2	27	650	27.7
21	7.021	15.4	31.5	900	23.4
24	7.024	17.5	36	1,150	21
28	7.028	20.5	42	1,600	17.5
36	7.036	26.3	54	2,600	13.8
48	7.048	35	72	4,800	10
60	7.060	43.8	90	7,200	8.4
90	7.090	65.7	135	16,200	5.6
110	7.110	80.3	165	23,500	4.7
125	7.125	91.2	188	32,000	3.9

${ }^{*} U_{\text {min }}=0.8 U_{N}$ for 40.61

AC/DC coil data - bistable (types 40.31/51/52/61)

Nominal voltage U_{N}	Coil code	Operating range		Resistance	Rated coil consumption I at U_{N}	DC: Release resistance** $R_{D C}$
V		V	V	Ω	mA	Ω
5	6.005	4	5.5	23	215	37
6	6.006	4.8	6.6	33	165	62
12	6.012	9.6	13.2	130	83	220
24	6.024	19.2	26.4	520	40	910
48	6.048	38.4	52.8	2,100	21	3,600
110	6.110	88	121	11,000	10	16,500

** $R_{D C}=$ Resistance in $D C, R_{A C}=1.3 \times R_{D C} 1 W$

Coil specifications

R 40 - DC coil operating range v ambient temperature Standard coil

R 40 - DC coil operating range v ambient temperature Sensitive coil, types 40.31/51/52/61

R 40-AC coil operating range v ambient temperature

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Wiring diagram for 40 series bistable coil version

AC Operation

$R_{A C} \simeq 1.3$
$D=1 \mathrm{~N} 400$

On momentary closure of the SET switch the relay is magnetised through the diode and the relay contacts transfer to the set position and remain in this position
On momentary closure of the RESET switch the relay is demagnetised through limiting resistor $\left(\mathrm{R}_{\mathrm{AC}}\right)$ and the contacts return to the reset position.

DC Operation

Notes: The minimum SET or RESET impulse time is 20 ms . The maximum time can be continuous. In practice, always ensure that the SET and RESET contacts cannot be operated simultaneously.

Outline drawings

Type 40.31/51/52/61

Type 40.31/61

* (3.5 or 5.3) mm see ordering code

Module	Socket	Relay	Description
$\mathbf{9 9 . 0 2}$	$\mathbf{9 5 . 0 3}$	40.31	Screw terminal (Box clamp) socket
	95.05	40.51	- Top terminals - Contacts
		40.52	- Bottom terminals - Coil
		40.61	

Mounting	Accessories
Panel or 35 mm rail	- Coil indication and EMC
(EN 60715) mount	suppression modules - - umper link - Timer modules - Plastic retaining and release clip

Module	Socket	Relay	Description
99.80	95.83 .3	40.31	Screw terminal (Box clamp) socket
	95.85 .3	40.51	95.83.3 wiring:
		40.52	- Top terminals - Contacts
		40.61	- Bottom terminals - Coil

Mounting	Accessories
Panel or 35 mm rail	- Coil indication and EMC
(EN 60715) mount	
suppression modules	
- Jumper link	
- Plastic retaining and release	
clip	

See page 13

Module	Socket	Relay	Description	Mounting	Accessories
$\mathbf{9 9 . 8 0}$	95.93 .3	40.31	Screw terminal (Box clamp) socket	Panel or 35 mm rail	- Coil indication and EMC
	95.95 .3	40.51	- Top terminals - Contacts	(EN 60715) mount	suppression modules - Jumper link
	40.52	- Bottom terminals - Coil		- Plastic retaining and release clip	

See page 14

| Module | Socket | Relay | Description | Mounting | Accessories |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 99.02 | 95.55 | 40.51 | Screwless terminal socket | Panel or 35 mm rail
 (EN 607 15) mount | - Coil indication and EMC
 suppression modules |

See page 15

STERED	Module	Socket	Relay	Description	Mounting	Accessories
	99.80	95.55.3	$\begin{aligned} & 40.51 \\ & 40.52 \\ & 40.61 \end{aligned}$	Screwless terminal socket For fast cable connections - Top terminals - Contacts - Bottom terminals - Coil	Panel or 35 mm rail (EN 60715) mount	- Coil indication and EMC suppression modules - Plastic retaining and release clip

See page 16

| Module | Socket | Relay | Description | Mounting | Accessories |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - | 95.65 | 40.51 | Screw terminal (Box clamp) socket | Panel or 35 mm rail
 (EN 607 15) mount | - Metal retaining clip |

See page 17

See page 18

Module	Socket	Relay	Description	Mounting	Accessories
-	95.13 .2	40.31	PCB socket	PCB mounting	- Metal retaining clip
-	95.15 .2	40.51			- Plastic retaining clip
		40.52			
		40.61			

Approvals (according to type):

-(11) us Certain relay/socket combinations

(

060.72

Screw terminal (Box clamp) socket panel or 35 mm rail mount
For relay type Accessories
Metal retaining clip

Plastic retaining and release clip
(supplied with socket-packaging code SPA)
8 -way jumper link
Identification tag
Modules (see table below)
Timer modules (see table below)
Sheet of marker tags for retaining and release clip 095.01

plastic, 72 tags, $6 \times 12 \mathrm{~mm}$

Technical data

Rated values
Dielectric strength
Protection category
Ambient temperature ${ }^{\circ} \mathrm{C}$
(42) Screw torque

Wire strip length
Max. wire size for 95.03 and 95.05 sockets

* For currents $>10 \mathrm{~A}$, contact terminals must be connected in parallel (21 with 11,24 with 14,22 with 12).

With the relay 40.51 the change-over contact will be 21-12-14.
95.03 (blue) 95.03 .0 (black) 95.05 (blue) 95.05 .0 (black)

40.31	$40.51,40.52,40.61$

095.71

095.01	095.01 .0	095.01	095.01 .0
095.18	095.18 .0	095.18	095.18 .0
095.00 .4			
99.02			
06.30			

$10 \mathrm{~A}-250 \mathrm{~V}$ *
$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
IP 20
$-40 \ldots+70$ (see diagram L95)
0.5

8

solid wire	stranded wire
$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

$1 \times 12 / 2 \times 14$
14,22 with 12).
L 95 - Total socket current vs ambient temperature (95.05)

8-way jumper link for 95.03 and 95.05 sockets	095.18 (blue)	095.18 .0 (black)
Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$	

Approvals (according to type):
EH[© ${ }^{C}$ c ${ }^{\circ}$

DC Modules with non-standard polarity (+A2) on request.

86 series timer modules
(12...24)V AC/DC; Bi-function: AI, DI; (0.05s...100h)
(110...125)V AC; Bi-function: AI, DI; (0.05s...100h)
(230...240)V AC; Bi-function: AI, DI; (0.05s...100h)
86.30.0.024.0000
86.30.8.120.0000
86.30.8.240.0000

Approvals (according to type): C E EH[PG c $\boldsymbol{I I}_{\text {US }}$

99.02 coil indication and EMC suppression modules for 95.03 and 95.05 sockets		
Diode (+A1, standard polarity)	(6...220)V DC	99.02.3.000.00
LED	(6...24)V DC/AC	99.02.0.024.59
LED	(28...60)V DC/AC	99.02.0.060.59
LED	(110...240)V DC/AC	99.02.0.230.59
LED + Diode (+A1, standard polarity)	(6...24)V DC	99.02.9.024.99
LED + Diode (+A1, standard polarity)	(28...60)V DC	99.02.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.02.9.220.99
LED + Varistor	(6...24)V DC/AC	99.02.0.024.98
LED + Varistor	(28...60)V DC/AC	99.02.0.060.98
LED + Varistor	(110...240)V DC/AC	99.02.0.230.98
RC circuit	(6...24)V DC/AC	99.02.0.024.09
RC circuit	(28...60)V DC/AC	99.02.0.060.09
RC circuit	(110...240)V DC/AC	99.02.0.230.09
Residual current by-pass	(110...240)V AC	99.02.8.230.07

Approvals (according to type):

060.72

For relay type	40.31		40.51, 40.52, 40.61	
Accessories				
Metal retaining clip	095.71			
Plastic retaining and release clip (supplied with socket - packaging code SPA)	095.91 .3	095.91 .30	095.91 .3	095.91 .30
8-way jumper link	095.08	095.08.0	095.08	095.08.0
Identification tag	095.80 .3			
Modules (see table below)	99.80			
Sheet of marker tags for retaining and release clip 095.91.3 plastic, 72 tags, $6 \times 12 \mathrm{~mm}$	060.72			
Technical data				
Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$ *			
Dielectric strength	$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts (95.83.3 only)			
Protection category	IP 20			
Ambient temperature ${ }^{\circ} \mathrm{C}$	-40...70 (see diagram L95)			
(4ㅏㅏ) Screw torque Nm	0.5			
Wire strip length mm	7			
Max. wire size for 95.83 .3 and 95.85 .3 sockets $\frac{}{} \begin{aligned} & \frac{\mathrm{m}^{2}}{} \\ & \\ & \text { AWG }\end{aligned}$	solid wire		stranded wire	
	$1 \times 6 / 2 \times 2.5$		$1 \times 4 / 2 \times 2.5$	
	$1 \times 10 / 2 \times 14$		$1 \times 12 / 2 \times 14$	

* For currents $>10 \mathrm{~A}$, contact terminals must be connected in parallel (21 with 11,24 with 14,22 with 12). With the relay 40.51 the change-over contact will be 21-12-14.

L 95 - Total socket current vs ambient temperature (95.85.3)

8-way jumper link for 95.83 .3 and 95.85 .3 sockets
095.08 (blue) 095.08 .0 (black)

Rated values 10 A - 250 V

Approvals (according to type):
EHE ©
*Modules in Black

> housing are available on request.

Green LED is standard. Red LED available on request.

99.80 coil indication and EMC suppression modules for 95.83 .3 and 95.85 .3 sockets

		Blue*
Diode (+A1, standard polarity)	(6..220)V DC	99.80.3.000.00
LED	(6...24)V DC/AC	99.80.0.024.59
LED	(28...60)V DC/AC	99.80.0.060.59
LED	(110...240)V DC/AC	99.80.0.230.59
LED + Diode (+A1, standard polarity)	(6...24)V DC	99.80.9.024.99
LED + Diode (+A1, standard polarity)	(28..60)V DC	99.80.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.80.9.220.99
LED + Varistor	(6...24)V DC/AC	99.80.0.024.98
LED + Varistor	(28...60)V DC/AC	99.80.0.060.98
LED + Varistor	(110...240)V DC/AC	99.80.0.230.98
RC circuit	(6...24)V DC/AC	99.80.0.024.09
RC circuit	(28...60)V DC/AC	99.80.0.060.09
RC circuit	(110...240)V DC/AC	99.80.0.230.09
Residual current by-pass	(110...240)V AC	99.80.8.230.07

95.95.3	Screw (Box clamp) term	mount	95.93 .3 (blue)	95.93.30 (black)	95.95 .3 (blue)	95.95 .30 (black)
	For relay type		40.31		40.51, 40.52, 40.61	
	Accessories					
	Metal retaining clip		095.71			
			095.91 .3	095.91 .30	095.91 .3	095.91 .30
	8-way jumper link		095.08	095.08.0	095.08	095.08.0
	Identification tag		095.80 .3			
Approvals (according to type): 	Modules (see table below)		99.80			
	Sheet of marker tags for retaining and release clip 095.91.3 plastic, 72 tags, $6 \times 12 \mathrm{~mm}$		060.72			
	Technical data					
π	Rated values		$10 \mathrm{~A}-250 \mathrm{~V}$ *			
	Dielectric strength		$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts			
	Protection category		IP 20			
	Ambient temperature	${ }^{\circ} \mathrm{C}$	-40 ...70 (see diagram L95)			
	(단) Screw torque	Nm	0.5			
	Wire strip length	mm	8			
- ППППППППП-			solid wire		stranded wire	
पПППППППП!			$1 \times 6 / 2 \times 2.5$		$1 \times 4 / 2 \times 2.5$	
पПातTMT1			$1 \times 10 / 2 \times 14$		$1 \times 12 / 2 \times 14$	

* For currents $>10 \mathrm{~A}$, contact terminals must be connected in parallel (21 with 11,24 with 14,22 with 12). With the relay 40.51 the change-over contact will be 21-12-14.
060.72
L 95 - Total socket current vs ambient temperature (95.95.3)

8-way jumper link for 95.93 .3 and 95.95 .3 sockets
Rated values

Approvals (according to type):
EH[©
*Modules in Black
housing are
available on request.
Green LED is standard. Red LED available on request.

L
99.80 coil indication and EMC suppression modules for 95.93 .3 and 95.95 .3 sockets

		Blue*
Diode (+A1, standard polarity)	(6...220)V DC	99.80.3.000.00
LED	(6...24)V DC/AC	99.80.0.024.59
LED	(28...60)V DC/AC	99.80.0.060.59
LED	(110...240)V DC/AC	99.80.0.230.59
LED + Diode (+A1, standard polarity)	(6...24)V DC	99.80.9.024.99
LED + Diode (+A1, standard polarity)	(28...60)V DC	99.80.9.060.99
$\underline{L E D ~+~ D i o d e ~(+A 1, ~ s t a n d a r d ~ p o l a r i t y) ~}$	(110...220)V DC	99.80.9.220.99
LED + Varistor	(6...24)V DC/AC	99.80.0.024.98
LED + Varistor	(28...60)V DC/AC	99.80.0.060.98
LED + Varistor	(110...240)V DC/AC	99.80.0.230.98
RC circuit	(6...24)V DC/AC	99.80.0.024.09
RC circuit	(28...60)V DC/AC	99.80.0.060.09
RC circuit	(110...240)V DC/AC	99.80.0.230.09
Residual current by-pass	(110...240)V AC	99.80.8.230.07

Approvals (according to type):

c ${ }^{2}{ }^{\text {us }}$

* For currents $>10 \mathrm{~A}$, contact terminals must be connected in parallel (21 with 11, 24 with 14, 22 with 12). With the relay 40.51 the change-over contact will be 21-12-14.
060.72
L 95 - Total socket current vs ambient temperature

86 series timer modules

$(12 \ldots 24) \mathrm{V} \mathrm{AC} / \mathrm{DC} ;$ Bi-function: $\mathrm{Al}, \mathrm{DI} ;(0.05 \mathrm{~s} \ldots 100 \mathrm{~h})$	86.30 .0 .024 .0000
$(110 \ldots 125) \mathrm{V} \mathrm{AC} ;$ Bi-function: $\mathrm{Al}, \mathrm{DI} ;(0.05 \mathrm{~s} \ldots 100 \mathrm{~h})$	86.30 .8 .120 .0000
$(230 \ldots 240) \mathrm{V} \mathrm{AC;} \mathrm{Bi-function:} \mathrm{Al}, \mathrm{DI} ;(0.05 \mathrm{~s} \ldots 100 \mathrm{~h})$	86.30 .8 .240 .0000

Approvals
(according to type): C EEH[PG c $\boldsymbol{I I}_{\text {US }}$

99.02 coil indication and EMC suppression modules for 95.55 socket		
Diode (+A1, standard polarity)	(6...220)V DC	99.02.3.000.00
LED	(6...24)V DC/AC	99.02.0.024.59
LED	(28...60)V DC/AC	99.02.0.060.59
LED	(110...240)V DC/AC	99.02.0.230.59
LED + Diode (+A 1, standard polarity)	(6...24)V DC	99.02.9.024.99
LED + Diode (+A1, standard polarity)	(28...60)V DC	99.02.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.02.9.220.99
LED + Varistor	(6...24)V DC/AC	99.02.0.024.98
LED + Varistor	(28...60)V DC/AC	99.02.0.060.98
LED + Varistor	(110...240)V DC/AC	99.02.0.230.98
RC circuit	(6...24)V DC/AC	99.02.0.024.09
RC circuit	(28...60)V DC/AC	99.02.0.060.09
RC circuit	(110...240)V DC/AC	99.02.0.230.09
Residual current by-pass	(110...240)V AC	99.02.8.230.07

L 95 - Total socket current vs ambient temperature

Screwless terminal socket panel or 35 mm rail mount
For relay type

Accessories

Metal retaining clip
Plastic retaining and release clip
(supplied with socket - packaging code SPA)
Modules (see table below)
Sheet of marker tags for retaining and release clip 095.91.3
$40.51,40.52,40.61$

$$
095.71
$$

$$
095.91 .3
$$

$$
99.80
$$

$$
060.72
$$

plastic, 72 tags, $6 \times 12 \mathrm{~mm}$
Technical data
Rated values

Dielectric strength
Protection category
Ambient temperature $\quad{ }^{\circ} \mathrm{C}$

Wire strip length mm

Max. wire size for 95.55 .3 socket

* For currents $>10 \mathrm{~A}$, contact terminals must be connected in parallel (21 with 11, 24 with 14, 22 with 12). With the relay 40.51 the change-over contact will be 21-12-14.

95.55.3 (blue) 95.55 .30 (black)

$10 \mathrm{~A}-250 \mathrm{~V}$ *
$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
IP 20
$-25 \ldots+70$ (see diagram L95)
8

solid wire	stranded wire
$2 \times(0.2 \ldots 1.5)$	$2 \times(0.2 \ldots 1.5)$
$2 \times(24 \ldots 18)$	$2 \times(24 \ldots 18)$

Approvals (according to type):

EH[©

*Modules in Black housing are available on request.

Green LED is standard. Red LED available on request.
99.80 coil indication and EMC suppression modules for 95.55 .3 socket

Diode (+A1, standard polarity)	(6...220)V DC	99.80.3.000.00
LED	(6...24)V DC/AC	99.80.0.024.59
LED	(28...60)V DC/AC	99.80.0.060.59
LED	(110...240)V DC/AC	99.80.0.230.59
LED + Diode (+A1, standard polarity)	(6...24)V DC	99.80.9.024.99
LED + Diode (+A1, standard polarity)	(28...60)V DC	99.80.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.80.9.220.99
LED + Varistor	(6...24)V DC/AC	99.80.0.024.98
LED + Varistor	(28...60)V DC/AC	99.80.0.060.98
LED + Varistor	(110...240)V DC/AC	99.80.0.230.98
RC circuit	(6...24)V DC/AC	99.80.0.024.09
RC circuit	(28...60)V DC/AC	99.80.0.060.09
RC circuit	(110...240)V DC/AC	99.80.0.230.09
Residual current by-pass	(110...240)V AC	99.80.8.230.07

(according to type):

* For currents $>10 \mathrm{~A}$, contact terminals must be connected in parallel (21 with 11,24 with 14,22 with 12). With the relay 40.51 the change-over contact will be 21-12-14.

L 95 - Total socket current vs ambient temperature

8-way jumper link for 95.63 and 95.65 sockets
Rated values

095.08 (blue)

 10 A - 250 V

Approvals (according to type):
EH[©

[^4]99.01 coil indication and EMC suppression modules for type 95.63 socket

Diode (+A1, standard polarity)	(6...220)V DC	99.01.3.000.00
Diode (+A2, non-standard polarity)	(6...220)V DC	99.01.2.000.00
LED	(6...24)V DC/AC	99.01.0.024.59
LED	(28...60)V DC/AC	99.01.0.060.59
LED	(110...240)V DC/AC	99.01.0.230.59
LED + Diode (+A 1, standard polarity)	(6...24)V DC	99.01.9.024.99
LED + Diode (+A 1, standard polarity)	(28...60)V DC	99.01.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.01.9.220.99
LED + Diode (+A2, non-standard polarity)	(6...24)V DC	99.01.9.024.79
LED + Diode (+A2, non-standard polarity)	(28...60)V DC	99.01.9.060.79
LED + Diode (+A2, non-standard polarity)	(110...220)V DC	99.01.9.220.79
LED + Varistor	(6...24)V DC/AC	99.01.0.024.98
LED + Varistor	(28...60)V DC/AC	99.01.0.060.98
LED + Varistor	(110...240)V DC/AC	99.01.0.230.98
RC circuit	(6...24)V DC/AC	99.01.0.024.09
RC circuit	(28...60)V DC/AC	99.01.0.060.09
RC circuit	(110...240)V DC/AC	99.01.0.230.09
Residual current by-pass	(110...240)V AC	99.01.8.230.07

95.15.2

Approvals (according to type):
(CHI (© (${ }^{(1)}$
${ }_{C}{ }^{-1}{ }^{\circ}$ US

PCB socket
For relay type Accessories
Metal retaining clip (supplied with socket - packaging code SMA)

| Plastic retaining clip |
| :--- | :--- |
| Technical data |

Rated values
Dielectric strength
Ambient temperature

* For currents >10 A, contact terminals must be connected in parallel (21 with 11, 24 with 14, 22 with 12). With the relay 40.51 the change-over contact will be 21-12-14.

95.13 .2 (blue) 95.13 .20 (black) 95.15 .2 (blue) 95.15 .20 (black)
40.31
$40.51,40.52,40.61$
095.51
095.52

10 A - 250 V *
$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts IP 20
$-40 \ldots+70$

Packaging codes

How to code and identify retaining clip and packaging options for sockets.
Example:

Features

1 \& 2 Pole - Low profile (15.7 mm height) 41.31-1 Pole 12 A (3.5 mm pin pitch) 41.52-2 Pole 8 A (5 mm pin pitch) 41.61-1 Pole 16 A (5 mm pin pitch)

PCB mount

- direct or via PCB socket

35 mm rail mount

- via screw and screwless sockets
- AC and DC coils
- $8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ isolation, coil-contacts
- Cadmium Free contact materials
- Flux proof: RT II standard, (RT III option)

For UL ratings see:
"General technical information" page V
Contact specification

Contact configuration
Rated current/Maximum peak current $\quad \mathrm{A}$

Rated voltage/Maximum switching voltage V AC

Rated load AC1
Rated load AC15 (230 V AC)

Single phase motor rating (230 V AC) kW

Breaking capacity DC 1:30/110/220 V A	
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Standard contact material	
Coil specification	

Nominal voltage $\left(U_{N}\right) \quad V \operatorname{AC}(50 / 60 \mathrm{~Hz})$

41.61

- 5 mm contact pin pitch - 1 Pole 16 A - PCB direct or via socket

$$
\begin{aligned}
& \text { - 3. } 5 \mathrm{~mm} \text { contact pin pitch } \\
& \text { - } 1 \text { Pole } 12 \mathrm{~A} \\
& \text { - PCB direct or via socket }
\end{aligned}
$$

41.52

- 2 Pole 8 A
- PCB direct or via socket

Features

1 \& 2 Pole - Polarized bistable, Low profile A (15.7 mm height)
41.52-2 Pole 8 A (5 mm pin pitch) 41.61-1 Pole 16 A (5 mm pin pitch)

Printed Circuit mount

- Polarized bistable relay with 2 coils
- $10 \mathrm{~mm}, 6 \mathrm{kV}$ (1.2/50 s) isolation, coil-contacts
- Cadmium Free contact materials
- Flux proof: RT II standard

2 coil version:
A3(+) A2 (-) = Set
A3(+)A1 (-) = Reset

Copper side view
41.61.6.xxx

- 1 Pole, 16 A - PCB direct mount

2 coil version:
A3 (+) A2 (-) = Set
A3(+)A1 (-) = Reset

Copper side view

Contact specification
Contact configuration
Rated current/Maximum peak current $\left(I_{N} / I_{\text {max }}\right)$
Rated voltage/Maximum switching voltage $\left(U_{N} / U_{\text {max }}\right)$ VAC
Rated load AC1
Rated load AC15 (230 V AC)
Single phase motor rating (230 V AC)
Breaking capacity DC $1: 30 / 110 / 220$ V A
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact m
Coil specification
Nominal voltage $\left(U_{N}\right)$
Rated power $\left(\mathrm{P}_{\mathrm{N}}\right)$
Operating range
Min. impulse duration
Max. impulse duration s
Technical data

Mechanical life DC	cycles
Electrical life at rated load AC1	cycles

Operate/release time	ms
Insulation between coil and contacts $(1.2 / 50 \mu \mathrm{~s})$	kV

Dielectric strength between open contacts VAC
Ambient temperature range ${ }^{\circ} \mathrm{C}$
Environmental protection
Approvals (according to type)

Features

Solid State Relays

Printed circuit mount: - direct or via PCB socket

35 mm rail mount: - via screw or screwless sockets

- Single circuit output switching options 5 A 24 V DC - 3 A 240 V AC
- Silent, high speed switching with long electrical life
- LED indicator
- Low profile (15.7 mm)
- Wash tight: RT III
- 2,500 V AC insulation, input-output
41.81-9024

41.81-8240

SERIES

Ordering information

Electromechanical relay (EMR)
A Example: 41 series low-profile PCB relay, 2 CO (DPDT), 24 V DC coil.

Solid state relay (SSR)

Example: 41 series SSR relay, 5 A output, 24 V DC supply.

Contact specification

F 41 - Electrical life (AC) v contact current (monostable) Types $41.31 / 61$

F 41 - Electrical life (AC) v contact current (bistable)

Coil specifications

AC coil data

Nominal voltage U_{N}	Coil	Operating range		Resistance	Rated coil consumption
V		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	I at U_{N}

DC coil data

Nominal voltage U_{N}	Coil code	Operating range		Resistance	Rated coil
		$U_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	I at U_{N}
V		V	V	Ω	mA
5	9.005	3.5	7.5	62	80
6	9.006	4.2	9	90	66.7
12	9.012	8.4	18	360	33.3
24	9.024	16.8	36	1,440	16.7
48	9.048	33.6	72	5,760	8.3
60	9.060	42	90	9,000	6.6
110	9.110	77	165	24,200	4.5

DC coil data (bistable)

Nominal voltage	Coil code	Operating range			Resistance	Rated coil power
U_{N}		$\begin{aligned} & \text { Set } \\ & U_{\text {min }} \end{aligned}$	Reset $U_{\text {min }}$	Set/Reset $U_{\text {max }}$	R	
V		V	V	V	Ω	mW
5	6.005	3.5	3.5	5.5	38	650
12	6.012	8.4	8.4	13.2	220	650
24	6.024	16.8	16.8	26.4	885	650

F 41 - Electrical life (AC) v contact current (monostable) Type 41.52

H 41- Maximum DC1 breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load.
Note: the release time for the load will be increased.

R 41-AC coil operating range \mathbf{v} ambient temperature

1 - Max. permitted coil voltage.
2-Min. pick-up voltage with coil at ambient temperature.
R 41- DC coil operating range v ambient temperature

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Solid state relay

Technical data

| Other data | | 41.81-9024 | $\mathbf{4 1 . 8 1 - 8 2 4 0}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Power lost to the environment | without current | W | 0.25 | 0.25 |
| | with maximum current | W | 1.75 | 3.5 |

Input specification

Input data - DC types

Nominal	Input code	Operating range		Release	Impedance	Control
U_{N}		$U_{\text {min }}$	$U_{\text {max }}$			I at U_{N}
V		V	V	V	Ω	mA
12	7.012	8	17	4	1,550	5.5
24	7.024	14	32	9	2,600	9

Output specification

L41- Output current vambient temperature
SSR - 5 A DC output types

L41-Output current vambient temperature
SSR - 3 A AC output types

Approvals (according to type):

C \in © HR ©
 (b) TN $_{\text {us }}^{\circ}$

Screw terminal socket 35 mm (EN 60715) mounting

Supply voltage	Relay type	Socket type
$6 \mathrm{~V} \mathrm{AC/DC}$	41.52.9.005.0010 or 41.61.9.005.0010	93.02.0.024
$12 \mathrm{~V} \mathrm{AC/DC}$	41.52.9.012.0010 or 41.61.9.012.0010	93.02.0.024
$24 \mathrm{~V} \mathrm{AC/DC}$	41.52/61.9.024.0010 or 41.81.7.024.xxxx	93.02.0.024
$60 \mathrm{~V} \mathrm{AC/DC}$	41.52.9.060.0010 or 41.61.9.060.0010	93.02.0.060
(110...125)V AC/DC	41.52.9.110.0010 or 41.61.9.110.0010	93.02.0.125
(220...240)V AC/DC	41.52.9.110.0010 or 41.61.9.110.0010	93.02.0.240
(230...240)V AC	41.52.9.110.0010 or 41.61.9.110.0010	93.02.8.230
6 V DC	41.52.9.005.0010 or 41.61.9.005.0010	93.02.7.024
12 V DC	41.52/61.9.012.0010 or 41.81.7.012.xxxx	93.02.7.024
$\underline{24 V D C}$	41.52/61.9.024.0010 or 41.81.7.024.xxxx	93.02.7.024
48 V DC	41.52.9.048.0010 or 41.61.9.048.0010	93.02.7.060
60 V DC	41.52.9.060.0010 or 41.61.9.060.0010	93.02.7.060
Accessories		
8-way jumper link	093.08 (see specification next page)	
Plastic separator	093.01 (see specification next page)	
Sheet of marker tags, 72 tags	060.72 (see specification next page)	
Technical data		
Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$	
Dielectric strength	$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contact	
Protection category	IP 20	
Ambient temperature ($\left.\mathrm{U}_{\mathrm{N}} \leq 60 \mathrm{~V} />60 \mathrm{~V}\right)^{\circ} \mathrm{C}$	$-40 \ldots+70 /-40 \ldots+55$	
(2f) Screw torque Nm	0.5	
Wire strip length mm	8	
Max. wire size for 93.02 socket	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

Note: Not for bistable relays

Approvals (according to type):

CE © E E P
 (H) ${ }^{\text {ch }}$

Accessories

Approvals
(according to type):

$\mathrm{EH}\left[{ }^{\mathrm{CN}} \mathrm{S}_{\mathrm{us}}\right.$

8-way jumper link for 93.02 and 93.52 sockets	093.08 (blue)	093.08 .0 (black)	093.08.1 (red)
Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$		

Thickness 2 mm , required at the start and the end of a group of interfaces.
Can be used for visual separation group, must be used for:

- protective separation of different voltages of neighbouring PLC interfaces according to VDE 0106-101
- protection of cut jumper links

[^5]
(1) finder

| PCB socket | 95.13 .2 (blue) | 95.13 .20 (black) | 95.15 .2 (blue) 95.15 .20 (black) |
| :--- | :--- | :--- | :--- | :--- |
| For relay type
 Accessories | 41.31 | $41.52,41.61,41.81^{(1)}$ | |
| Plastic retaining clip | | 095.42 | |
| Technical data | | $10 \mathrm{~A}-250 \mathrm{~V}$ * | |
| Rated values
 Dielectric strength | $6 \mathrm{kV} \mathrm{(1.2/50} \mathrm{\mu s)} \mathrm{between} \mathrm{coil} \mathrm{and} \mathrm{contacts}$ | | |
| Protection category | ${ }^{\circ} \mathrm{C}$ | $-40 \ldots+70$ | |
| Ambient temperature | -40 | | |

* For currents $>10 \mathrm{~A}$, contact terminals must be connected in parallel (21 with 11, 24 with 14,22 with 12).
${ }^{\text {(1) }}$ With the relay 41.81 the NO change-over contact will be 11-14.
(according to type):

Note: Not for bistable relays

Packaging codes

How to code and identify retaining clip and packaging options for sockets.
Example:

Features

1 Pole - Low profile (15.4 mm height) $43.41 \quad-1$ Pole, $10 \mathrm{~A}(3.2 \mathrm{~mm}$ pin pitch) 43.41-0300-1 Pole NO, 10 A (5 mm pin pitch) 43.61-0300-1 Pole NO, 16 A (5 mm pin pitch)

PCB mount - direct or via PCB socket (43.41 version)

- Sensitive DC coil:

$$
-250 \mathrm{~mW} \text { (10 A version) }
$$

$$
\text { - } 400 \mathrm{~mW} \text { (16 A version) }
$$

- Very high coil-contact isolation 10 mm , $6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$
- Cadmium Free contacts (preferred version)
- Flux proof: RT II standard, (RT III option)
43.41

For UL ratings see:
"General technical information" page V

Contact specification

Contact configuration

| Rated current/Maximum peak current \quad A |
| :--- | :--- |
| Rated voltage/Maximum switching voltage V AC |

Rated load AC1

Rated load AC15 (230 V AC)	VA
Single phase motor rating (230 V AC)	kW

Single phase motor rating (230 V AC)	kW
Breaking capacity DC1: 30/110/220 V	A

Minimum switching load	mW
Standard	

Standard contact
Coil specification

Approvals (according to type)

43.41 - 3.2 mm contact pin pitch - 1 Pole CO, 10 A - PCB direct or via socket	43.41-0300 - 5 mm contact pin pitch - 1 Pole NO, 10 A - PCB mount	43.61-0300 - 5 mm contact pin pitch - 1 Pole NO, 16 A - PCB mount
 Copper side view	 Copper side view	 Copper side view
$1 \mathrm{CO}($ SPDT)	1 NO (SPST-NO)	1 NO (SPST-NO)
10/15	10/15	16/25
250/400	250/400	250/400
2,500	2,500	4,000
500	500	750
-	-	-
10/0.3/0.12	10/0.3/0.12	16/0.3/0.12
300 (5/5)	300 (5/5)	300 (5/5)
AgNi	AgNi	AgNi
-	-	-
3-6-9-12-18-24-36-48	3-6-9-12-18-24-36-48	12-24-48
-/0.25	-/0.25	-/0.4
-	-	-
$(0.7 \ldots 1.5) U_{N}$	(0.7...1.5) U_{N}	(0.7...1.2) U_{N}
$-/ 0.4 U_{N}$	$-/ 0.4 U_{N}$	$-/ 0.4 U_{N}$
$-/ 0.05 \mathrm{U}_{\mathrm{N}}$	$-/ 0.05 \mathrm{U}_{\mathrm{N}}$	$-/ 0.05 \mathrm{U}_{\mathrm{N}}$
$-/ 10 \cdot 10^{6}$	$-/ 10 \cdot 10^{6}$	$-/ 10 \cdot 10^{6}$
$100 \cdot 10^{3}$	$100 \cdot 10^{3}$	$50 \cdot 10^{3}$
6/4	6/2	6/2
$6(10 \mathrm{~mm})$	6 (10 mm)	6 (10 mm)
1,000	1,000	1,000
$-40 \ldots+85$	-40...+85	$-40 \ldots+85$
RT II	RT II	RT II
EF[PG (H) cTI ${ }_{\text {US }}$		

43.61-0300

Ordering information

Example: 43 series low-profile PCB relay, 1 CO (SPDT), 24 V DC coil.

Selecting features and options: only combinations in the same row are possible.
Preferred selections for best availability are shown in bold.

Type	Coil version	A	B	C	D
43.41	sensitive DC	$\mathbf{0}-2-4-5$	$\mathbf{0}-3$	$\mathbf{0}$	$\mathbf{0}-1$
43.61	DC	$\mathbf{0}-2-4$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$

Technical data

Contact specification

F 43 - Electrical life (AC) v contact current

H 43 - Maximum DCl breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ for 43.41 and $\geq 50 \cdot 10^{3}$ for 43.61 can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications

DC coil data - 0.25 W sensitive (type 43.41)

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at U_{N}
		$\mathrm{U}_{\text {min }}$	$U_{\text {max }}$		
V		V	V	Ω	mA
3	7.003	2.2	4.5	36	83.5
6	7.006	4.2	9	150	40
9	7.009	6.5	13.5	324	27.7
12	7.012	8.4	18	580	20.7
18	7.018	13	27	1,300	13.8
24	7.024	16.8	36	2,200	10.9
36	7.036	25.2	54	5,200	6.9
48	7.048	33.6	72	9,200	5.2

DC coil data - 0.4 W standard (type 43.61)

$\left.$| Nominal
 voltage
 U_{N} | Coil
 code | Operating range | | | Resistance |
| :---: | :---: | :---: | :---: | :---: | :---: | | Rated coil |
| :---: |
| consumption | \right\rvert\,

R 43 - DC coil operating range v ambient temperature

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

95 Series - Sockets and accessories for 43 series relays

Packaging codes

How to code and identify retaining clip and packaging options for sockets.
Example:

Ordering information

Example: 44 series PCB relay, 2 CO (DPDT) 10 A contacts, 24 V DC coil.

Coil version

7 = Sensitive DC
9 = DC
Coil voltage
See coil specifications

Selecting features and options: only combinations in the same row are possible.
Preferred selections for best availability are shown in bold.

Type	Coil version	A	B	C	D
44.52	DC - sens. DC	$\mathbf{0}-5$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
44.62	DC - sens. DC	$\mathbf{0}-4$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

Technical data

Insulation according to EN 61810-1		
Nominal voltage of supply system V AC	230/400	
Rated insulation voltage V AC	250	400
Pollution degree	3	2
Insulation between coil and contact set		
Type of Insulation	Reinforced (8 mm)	
Overvoltage category	III	
Rated impulse voltage $\mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$	6	
Dielectric strength V AC	4,000	
Insulation between adjacent contacts		
Type of insulation	Basic	
Overvoltage category	III	
Rated impulse voltage kV (1.2/50 s)	4	
Dielectric strength V AC	2,500	
Insulation between open contacts		
Type of disconnection	Micro-disconnection	
Dielectric strength V AC/kV (1.2/50 s)	1,000/1.5	
Conducted disturbance immunity		
Burst (5...50)ns, 5 kHz , on A1-A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s}$) on A1-A2 (differential mode)	EN 61000-4-5	level 3 (2 kV)
Other data		
Bounce time: $\mathrm{NO} / \mathrm{NC} \mathrm{ms}$	4/4	
Vibration resistance ($5 \ldots .55$) Hz: NO/NC g	15/12	
Shock resistance g	16	
Power lost to the environment without contact current W	0.6	
with rated current W	1.2 (44.52)	2.7 (44.62)
Recommended distance between relays mounted on PCB mm	≥ 5	

Contact specification

F 44 - Electrical life (AC) v contact current

H 44 - Maximum DC1 breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

DC coil data-0.5 W sensitive

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at U_{N}
		$\mathrm{U}_{\text {min }}{ }^{*}$	$\mathrm{U}_{\max }$		
V		V	V	Ω	mA
6	7.006	4.4	10.2	75	80
9	7.009	6.6	15.3	160	56
12	7.012	8.8	20.4	300	40
14	7.014	10.2	23.8	400	35
24	7.024	17.5	40.8	1,200	20
28	7.028	20.5	47.6	1,600	17.5
48	7.048	35	81.6	4,800	10
60	7.060	43.8	102	7,200	8.4
110	7.110	80.3	187	23,500	4.7
125	7.125	100	219	32,000	3.9

${ }^{*} U_{\min }=0.8 U_{N}$ for 44.62

R 44 - DC coil operating range v ambient temperature
Sensitive coil

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Module	Socket	Relay	Description
99.02	95.05	44.52	Screw terminal (Box clamp) socket
		44.62	- Top terminals - Contacts
- Bottom terminals - Coil			

Mounting	Accessories
Panel or 35 mm rail (EN 60715) mount	- Coil indication and EMC suppression modules - Jumper link
-Timer modules	
- Plastic retaining and release	
clip	

Module	Socket	Relay	Description	Mounting	Accessories
99.80	95.85 .3	44.52	Screw terminal (Box clamp) socket	Panel or 35 mm rail (EN 60715) mount	- Coil indication and EMC suppression modules - Plastic retaining and release clip
		44.62			

Module	Socket	Relay	Description	Mounting	Accessories
99.80	95.95 .3	44.5	Screw terminal (Box clamp) socket - Top terminals - Contacts	Panel or 35 mm rail (EN 60715) mount	Coil indication and EMC suppression modules - Plastic retaining and release clip
		44.62	- Bottom terminals - Coil		

See page 7

See page 8

See page 9

-1	Module	Socket	Relay	Description	Mounting	Accessories
-	95.65	44.52	Screw terminal (Box clamp) socket	Panel or 35 mm rail (EN 60715) mount	- Metal retaining clip	

See page 10

	Module	Socket	Relay	Description	Mounting	Accessories
95.15 .2	-	95.15 .2	$\begin{aligned} & 44.52 \\ & 44.62 \end{aligned}$	PCB socket	PCB mounting	- Metal retaining clip
See page 11						

Approvals (according to type):

C \in © F E C (1) ${ }^{(9)}{ }^{\circ}{ }_{\text {us }}$

((1)u" Certain reloy/socker combinations

060.72

8-way jumper link for 95.05 socket
Rated values
095.18 (blue)
095.18 .0 (black) 10 A - 250 V

(12...24)V AC/DC; Bi-function: AI, DI; (0.05s...100h) 86.30.0.024.0000

Approvals (according to type): C E EH[PG c $\mathbf{T I}_{\text {Us }}^{\text {u }}$

Approvals (according to type):

DC Modules with non-standard polarity (+A2) on request.

86 series timer modules

99.02 coil indication and EMC suppression modules for 95.05 socket

Diode (+A 1 , standard polarity)	(6...220)V DC	99.02.3.000.00
LED	(6...24)V DC/AC	99.02.0.024.59
LED	(28...60)V DC/AC	99.02.0.060.59
LED	(110...240)V DC/AC	99.02.0.230.59
LED + Diode (+A 1, standard polarity)	(6...24)V DC	99.02.9.024.99
LED + Diode (+A 1, standard polarity)	(28...60)V DC	99.02.9.060.99
LED + Diode (+A 1, standard polarity)	(110...220)V DC	99.02.9.220.99
LED + Varistor	(6...24)V DC/AC	99.02.0.024.98
LED + Varistor	(28...60)V DC/AC	99.02.0.060.98
LED + Varistor	(110...240)V DC/AC	99.02.0.230.98
RC circuit	(6...24)V DC/AC	99.02.0.024.09
RC circuit	(28...60)V DC/AC	99.02.0.060.09
RC circuit	(110...240)V DC/AC	99.02.0.230.09
Residual current by-pass	(110...240)V AC	99.02.8.230.07

	Screw terminal (Box cla	mount	95.85 .3 (blue)	95.85 .30 (black)
	For relay type		44.52, 44.62	
	Accessories			
	Metal retaining clip		095.71	
	Plastic retaining and release clip (supplied with socket - packaging code SPA)		095.91 .3	095.91 .30
Approvals (according to type):	8-way jumper link		095.08	095.08.0
	Identification tag		095.80 .3	
	Modules (see table be		99.80	
C E EHL PG c ${ }^{-1}$	Sheet of marker tags for plastic, 72 tags, 6×12	$5.91 .3$	060.72	
11	Technical data			
	Rated values		$10 \mathrm{~A}-250 \mathrm{~V}$	
	Dielectric strength		$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts	
	Protection category		IP 20	
- 095.91.3	Ambient temperature	${ }^{\circ} \mathrm{C}$	-40...70 (see diagram L95)	
	(4ㅏ) Screw torque	Nm	0.5	
- ПППППITMT1	Wire strip length	mm	7	
- पППППППППగ	Max. wire size for 95.85 .3 sockets $\quad \frac{}{\frac{\mathrm{mm}^{2}}{\text { AWG }}}$		solid wire	stranded wire
- ПППППППППН			$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
- ППППППППП\|			$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

060.72

L 95 - Total socket current vs ambient temperature

8-way jumper link for 95.85 .3 sock
Rated values

Approvals (according to type):

* Modules in Black housing are available on request.

Green LED is standard Red LED available on request.
99.80 coil indication and EMC suppression modules for 95.85 .3 socket

		Blue*
Diode (+A1, standard polarity)	(6...220)V DC	99.80.3.000.00
LED	(6...24)V DC/AC	99.80.0.024.59
LED	(28...60)V DC/AC	99.80.0.060.59
LED	(110...240)V DC/AC	99.80.0.230.59
LED + Diode (+A1, standard polarity)	(6...24)V DC	99.80.9.024.99
LED + Diode (+A1, standard polarity)	(28...60)V DC	99.80.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.80.9.220.99
LED + Varistor	(6...24)V DC/AC	99.80.0.024.98
LED + Varistor	(28...60)V DC/AC	99.80.0.060.98
LED + Varistor	(110...240)V DC/AC	99.80.0.230.98
RC circuit	(6...24)V DC/AC	99.80.0.024.09
RC circuit	(28...60)V DC/AC	99.80.0.060.09
RC circuit	(110...240)V DC/AC	99.80.0.230.09
Residual current by-pass	(110...240)V AC	99.80.8.230.07

Screw terminal (Box clamp) socket panel or 35 mm rail moun Accessories
Metal retaining clip

Plastic retaining and release clip (supplied with socket - packaging code SPA)	095
8 way jimper link	

Approvals (according to type):
C \in EHI PG $C \operatorname{li}_{\text {us }}$

8-way jumper link	095
Identification tag	

Modules (see table below)
Sheet of marker tags for retaining and release clip 095.91 .3

Sheet of marker tags for retaining and release clip 095.91.3
plastic, 72 tags, $6 \times 12 \mathrm{~mm}$

Technical data	
Rated values	
Dielectric strength	
Protection category	${ }^{\circ} \mathrm{C}$
Ambient temperature	Nm
(4ty) Screw torque	mm
Wire strip length	
Max. wire size for 95.95 .3 sockets	$\frac{\mathrm{m}^{2}}{}$

95.95 .3 (blue)	95.95 .30 (black)
$44.52,44.62$	

44.52, 44.62
060.72

10 A - 250 V
$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
IP 20
-40...+70 (see diagram L95)
0.5

8

solid wire	stranded wire
$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

L 95 - Total socket current vs ambient temperature

8-way jumper link for 95.95 .3 socket
Rated values
095.08 (blue) | 095.08 .0 (black)

Approvals
(according to type):
EA[©

* Modules in Black housing are available on request.

Green LED is standard. Red LED available on request.
99.80 coil indication and EMC suppression modules for 95.95 .3 socket

		Blue*
Diode (+A1, standard polarity)	(6...220)V DC	99.80.3.000.00
LED	(6...24)V DC/AC	99.80.0.024.59
LED	(28...60)V DC/AC	99.80.0.060.59
LED	(110...240)V DC/AC	99.80.0.230.59
LED + Diode (+A 1, standard polarity)	(6...24)V DC	99.80.9.024.99
LED + Diode (+A 1, standard polarity)	(28...60)V DC	99.80.9.060.99
LED + Diode (+A 1, standard polarity)	(110...220)V DC	99.80.9.220.99
LED + Varistor	(6...24)V DC/AC	99.80.0.024.98
LED + Varistor	(28...60)V DC/AC	99.80.0.060.98
LED + Varistor	(110...240)V DC/AC	99.80.0.230.98
RC circuit	(6...24)V DC/AC	99.80.0.024.09
RC circuit	(28...60)V DC/AC	99.80.0.060.09
RC circuit	(110...240)V DC/AC	99.80.0.230.09
Residual current by-pass	(110...240)V AC	99.80.8.230.07

Approvals (according to type):

060.72

Screwless terminal socket panel or 35 mm rail mount
For relay type

Accessories

Metal retaining clip	095.71

Plastic retaining and release clip 095.91.3
(supplied with socket - packaging code SPA)

Modules (see table below)	99.02
Timer modules (see table below)	86.30
Sheet of marker tags for retaining and release clip 095.91.3	060.72

plastic, 72 tags, $6 \times 12 \mathrm{~mm}$
Technical data

Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$		
Dielectric strength	$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts		
Protection category		IP 20	
Ambient temperature	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$ (see diagram L95)	
Wire strip length	mm	8	
Max. wire size for 95.55 socket		solid wire	stranded wire
	mm^{2}	$2 \times(0.2 \ldots 1.5)$	$2 \times(0.2 \ldots 1.5)$
	$\overline{\text { AWG }}$	$2 \times(24 \ldots 18)$	$2 \times(24 \ldots 18)$

86 series timer modules

(12...24)V AC/DC; Bi-function: AI, DI; (0.05s...100h)
86.30.0.024.0000

Approvals
(according to type): $\mathbf{C} \in \mathbb{E H}\left[\right.$ PG ${ }_{C} \mathbf{I}_{\text {US }}$

Approvals (according to type):

DC Modules with non-standard polarity (+A2) on request.
99.02 coil indication and EMC suppression modules for 95.55 socket

Diode (+A1, standard polarity)	(6...220)V DC	99.02.3.000.00
LED	(6...24)V DC/AC	99.02.0.024.59
LED	(28...60)V DC/AC	99.02.0.060.59
LED	(110...240)V DC/AC	99.02.0.230.59
LED + Diode (+A 1, standard polarity)	(6...24)V DC	99.02.9.024.99
LED + Diode (+A1, standard polarity)	(28...60)V DC	99.02.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.02.9.220.99
LED + Varistor	(6...24)V DC/AC	99.02.0.024.98
LED + Varistor	(28...60)V DC/AC	99.02.0.060.98
LED + Varistor	(110...240)V DC/AC	99.02.0.230.98
RC circuit	(6...24)V DC/AC	99.02.0.024.09
RC circuit	(28...60)V DC/AC	99.02.0.060.09
RC circuit	(110...240)V DC/AC	99.02.0.230.09
Residual current by-pass	(110...240)V AC	99.02.8.230.07

Approvals (according to type):

EH[©

*Modules in Black housing are available on request.

Green LED is standard. Red LED available on request.
99.80 coil indication and EMC suppression modules for 95.55 .3 socket

		Blue*
Diode (+A1, standard polarity)	(6..220)V DC	99.80.3.000.00
LED	(6...24)V DC/AC	99.80.0.024.59
LED	(28...60)V DC/AC	99.80.0.060.59
LED	(110...240)V DC/AC	99.80.0.230.59
LED + Diode (+A1, standard polarity)	(6...24)V DC	99.80.9.024.99
LED + Diode (+A1, standard polarity)	(28...60)V DC	99.80.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.80.9.220.99
LED + Varistor	(6...24)V DC/AC	99.80.0.024.98
LED + Varistor	(28...60)V DC/AC	99.80.0.060.98
LED + Varistor	(110...240)V DC/AC	99.80.0.230.98
RC circuit	(6...24)V DC/AC	99.80.0.024.09
RC circuit	(28...60)V DC/AC	99.80.0.060.09
RC circuit	(110...240)V DC/AC	99.80.0.230.09
Residual current by-pass	(110...240)V AC	99.80.8.230.07

Approvals (according to type):

Screw terminal (Box clamp) socket panel or 35 mm rail mount 95.65 (blue)
For relay type
Accessories

Metal retaining clip	095.71	
8-way jumper link	095.08	
Modules	-	
Technical data		
Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$	
Dielectric strength (between coil and contacts)	2 kV AC	
Protection category	IP 20	
Ambient temperature ${ }^{\circ} \mathrm{C}$	-40 ...70 (see diagram L95)	
(84) Screw torque Nm	0.5	
Wire strip length mm	7	
Max. wire size for 95.65 sockets	solid wire	stranded wire
m^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

L 95 - Total socket current vs ambient temperature

95.65

8-way jumper link for 95.65 sockets
095.08 (blue)

Rated values

Approvals (according to type):

${ }_{c} \boldsymbol{H I}_{\text {US }}^{0}$

PCB socket	$\mathbf{9 5 . 1 5 . 2}$ (blue)	$\mathbf{9 5 . 1 5 . 2 0}$ (black)
For relay type	$44.52,44.62$	
Accessories		095.51
Metal retaining clip (supplied with socket - packaging code SMA)		095.52
Plastic retaining clip		
Technical data	$10 \mathrm{~A}-250 \mathrm{~V}$	
Rated values	$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts	
Dielectric strength	IP 20	
Protection category	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Ambient temperature		

Copper side view

Packaging codes

How to code and identify retaining clip and packaging options for sockets.
Example:

Ordering information

Example: 45 series for PCB relay + Faston $250,1 \mathrm{NO}$ (SPST-NO), 12 V DC coil.

Coil voltage

$4=$ NC (SPST) 45.71 only
See coil specifications
Selecting features and options: only combinations in the same row are possible.

Type	Coil version	A	B	C	D
45.31	sensitive DC	$0-2$	3	1	0
45.71	sensitive DC	$0-1$	$3-4$	1	$0-1$
45.91	sensitive DC	$0-2$	3	1	$0-1$

Technical data

Insulation according to EN 61810-1		
	45.71	45.31 / 45.91
Nominal voltage of supply system V AC	230/400	230/400
Rated insulation voltage V AC	250 400	250 年 400
Pollution degree	$3 \mathrm{l\mid l}$	3 l
Insulation between coil and contact set		
Type of insulation	Reinforced (8 mm)	Reinforced (8 mm)
Overvoltage category	III	III
Rated impulse voltage kV (1.2/50 $\mathrm{\mu s}$)	6	6
Dielectric strength V AC	4,000	4,000
Insulation between open contacts		
Type of disconnection	Micro-disconnection	Full-disconnection
Overvoltage category	-	III
Rated impulse voltage kV (1.2/50 s)	-	4
Dielectric strength V AC/kV (1.2/50 s$)$	1,000/1.5	2,500/4
Conducted disturbance immunity		
Burst ($5 \ldots . .50$ ns, 5 kHz , on Al - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s}$) on A 1 - A2 (differential mode)	EN 61000-4-5	level 3 (2 kV)
Other data	45.71	45.31 / 45.91
Bounce time: NO/NC ms	3/3	2/-
Vibration resistance (10...150)Hz: NO/NC g	20/10	20/-
Shock resistance g	20	
Power lost to the environment without contact current W	0.4	
with rated current W	1.8	
Recommended distance between relays mounted on PCB mm	≥ 5	

Contact specification

F 45 - Electrical life (AC) v contact current
Type 45.71

F 45 - Electrical life (AC) v contact current Type 45.31 / 45.91

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ cycles (45.71) and $\geq 30 \cdot 10^{3}$ cycles $(45.31,45.91$) can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

R 45 - DC coil operating range v ambient temperature

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Type 45.71 / 91

Features

$1 \& 2$ Pole relay range 46.52-2 Pole 8 A
46.61-1 Pole 16 A

- Socket mount or direct connection via Faston connectors
- AC coils \& DC coils
- Available with: lockable test button, mechanical indicator \& LED indicator
- $8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ isolation, coil-contacts
- Cadmium Free contacts
- European Patent

For Ul ratings see:
"General technical information" page V
Contact specification
Contact configuration

| Rated current/Maximum peak current $\quad \mathrm{A}$ |
| :--- | :--- |
| Rated voltage/Maximum switching voltage V AC |
| Rated lad |

Rated load AC1

Rated load AC15 (230 V AC)
Single phase motor rating (230 V AC) kW

Breaking capacity DC $1: 30 / 110 / 220 \mathrm{~V}$	A
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	

Coil specification

* With the AgSnO_{2} material the maximum peak current is 80 A - 5 ms on normally open contact.

Ordering information

Example: 46 series Miniature industrial relay, 1 CO (SPDT), 24 V DC coil, lockable test button and mechanical indicator.

Selecting features and options: only combinations in the same row are possible. Preferred selections for best availability are shown in bold.

Type	Coil version	A	B	C	D
46.52	AC - DC	$\mathbf{0}-5$	$\mathbf{0}$	$2-\mathbf{4}$	$\mathbf{0}$
	AC	$0-5$	0	54	$/$
	DC	$0-5$	0	74	$/$
	AC - DC	$\mathbf{0}-4-5$	$\mathbf{0}$	$2-\mathbf{4}$	$\mathbf{0}$
	AC	$0-4-5$	0	54	$/$
	DC	$0-4-5$	0	74	$/$

Special versions for Rail Applications on request

Descriptions: Options
A1
C: Option 54
LED (AC)

Lockable test button and mechanical flag indicator $(0040,0054,0074)$
The dual-purpose Finder test button can be used in two ways:
Case 1) The plastic pip (located directly below the test button) remains intact. In this case, when the test button is pushed, the contacts operate. When the test button is released the contacts return to their former state.
Case 2) The plastic pip is broken-off (using an appropriate cutting tool). In this case, (in addition to the above function), when the test button is pushed and rotated, the contacts are latched in the operating state, and remain so until the test button is rotated back to its former position. In both cases ensure that the test button actuation is swift and decisive.

Technical data

Insulation according to EN 61810-1		
	1 pole	2 pole
Nominal voltage of supply system V AC	230/400	230/400
Rated insulation voltage V AC	250 年 400	250 年 400
Pollution degree	3	3 2
Insulation between coil and contact set		
Type of insulation	Reinforced (8 mm)	Reinforced (8 mm)
Overvoltage category	III	III
Rated impulse voltage kV (1.2/50 s)	6	6
Dielectric strength V AC	4,000	4,000
Insulation between adjacent contacts		
Type of insulation	-	Basic
Overvoltage category	-	III
Rated impulse voltage kV (1.2/50 s)	-	4
Dielectric strength V AC	-	2,000
Insulation between open contacts		
Type of disconnection	Micro-disconnection	Micro-disconnection
Dielectric strength V AC/kV (1.2/50 s)	1,000/1.5	1,000/1.5
Conducted disturbance immunity		
Burst ($5 \ldots .50$)ns, 5 kHz , on A1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s}$) on A1 - A2 (differential mode)	EN 61000-4-5	level 3 (2 kV)
Other data	46.61	46.52
Bounce time: NO/NC ms	2/6	1/4
Vibration resistance (10..150)Hz: NO/NC g	20/12	20/15
Shock resistance g	20	20
Power lost to the environment without contact current W	0.6	0.6
with rated current W	1.6	2
Recommended distance between relays mounted on PCB mm	≥ 5	

Contact specification

F 46 - Electrical life (AC) v contact current
Type 46.52

H 46 - Maximum DC1 breaking capacity

I-2014, www.findernet.com

F 46 - Electrical life (AC) v contact current
Type 46.61

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications

DC coil data

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at U_{N}
		$\mathrm{U}_{\text {min }}$	$U_{\text {max }}$		
V		V	V	Ω	mA
12	9.012	8.8	13.2	300	40
24	9.024	17.5	26.4	1,200	20
48	9.048	35	52.8	4,800	10
110	9.110	80	121	23,500	4.7
125	9.125	91.2	138	32,000	3.9

R 46 - DC coil operating range vambient temperature

1-Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

AC coil data

Nominal voltage U_{N}	Coil	Operating range		Resistance	Rated coil consumption
V		$U_{\min }$	$\mathrm{U}_{\max }$	R	I at U_{N}

R 46-AC coil operating range v ambient temperature

1-Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Accessories

L 97 - Rated current vs ambient temperature
(for 46.61 relay / 97.01 socket combination)

8-way jumper link for 97.01 and 97.02 sockets
095.18 (blue)
095.18 .0 (black)
Rated values 10 A - 250 V

Screw terminal socket panel or 35 mm rail (EN 60715) mount		97.01 (blue)	97.01 .0 (black)	97.02 (blue)	97.02 .0 (black)
For relay type		46.61		46.52	
Accessories					
Plastic retain and release clip (supplied with socket - packaging code SPA)		097.01			
Metal retaining clip		097.71			
Identification tag		095.00 .4			
8-way jumper link		095.18 (blue)		095.18 .0 (black)	
Modules (see table below)		99.02			
Timer modules (see table below)		86.30			
Technical data					
Rated current		16 A - 250 V AC		$8 \mathrm{~A}-250 \mathrm{~V}$ AC	
Dielectric strength		$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts			
Protection category		IP 20			
Ambient temperature	${ }^{\circ} \mathrm{C}$	-40...+70 (see diagram L97)			
(2ㅏㄱ) Screw torque	Nm	0.8			
Wire strip length	mm	8			
Max. wire size for 97.01 and 97.02 sockets		solid wire		stranded wire	
	mm^{2}	$1 \times 6 / 2 \times 2.5$		$1 \times 4 / 2 \times 2.5$	
	AWG	$1 \times 10 / 2 \times 14$		$1 \times 12 / 2 \times 14$	

86 series timer module

$(12 \ldots 24) \mathrm{V} \mathrm{AC} / \mathrm{DC} ;$ Bi-function: AI, DI; $(0.05 \mathrm{~s} \ldots 100 \mathrm{~h})$	86.30 .0 .024 .0000
$(110 \ldots 125) \mathrm{VAC} ;$ Bi-function: AI, DI; $(0.05 \mathrm{~s} \ldots 100 \mathrm{~h})$	86.30 .8 .120 .0000
$(230 \ldots 240) \mathrm{V} \mathrm{AC} ;$ Bi-function: Al, DI; (0.05s...100h)	86.30 .8 .240 .0000

Approvals
(according to type): CEEA[PG c $\boldsymbol{7 I}_{\text {us }}$

Approvals (according to type):

[^6]
97 Series - Sockets and accessories for 46 series relays

Approvals (according to type):

${ }^{C} \mathrm{Cl}_{\text {US }}^{\circ}$

For relay type
46.61
46.52

Accessories

Plastic retain and release clip
(supplied with socket - packaging code SPA)

Metal retaining clip	097.71
Modules (see table below)	99.02
Timer modules (see table below)	86.30

Technical data
Rated current

Rated current		$10 \mathrm{~A}-250 \mathrm{~V}$ AC	$8 \mathrm{~A}-250 \mathrm{~V}$ AC
Dielectric strength		$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$	il and contacts
Protection category		IP 20	
Ambient temperature	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$	
Wire strip length	mm	8	
Max. wire size for 97.51 and 97.52 sockets		solid wire	stranded wire
	mm^{2}	2x(0.2...1.5)	2x(0.2...1.5)
	AWG	$2 \times(24 \ldots 18)$	2x(24...18)

86.30

Approvals
(according to type):
EHE ©C CNus

DC Modules with non-standard polarity (+A2) on request.

86 series timer module

$(12 \ldots 24) \mathrm{V} \mathrm{AC} / \mathrm{DC} ;$ Bi-function: Al, DI; (0.05s...100h)	86.30 .0 .024 .0000
$(110 \ldots 125) \mathrm{V} \mathrm{AC;} \mathrm{Bi-function:} \mathrm{AI}, \mathrm{DI;} \mathrm{(0.05s...100h)}$	86.30 .8 .120 .0000
$(230 \ldots 240) \mathrm{V} \mathrm{AC} ;$ Bi-function: Al, DI; (0.05s...100h)	86.30 .8 .240 .0000

Approvals (according to type): CEEF[PG c $\mathbf{N I}_{\text {US }}$
99.02 coil indication and EMC suppression modules for 97.51 and 97.52 sockets

Diode (+A1, standard polarity)	(6...220)V DC	99.02.3.000.00
LED	(6...24)V DC/AC	99.02.0.024.59
LED	(28...60)V DC/AC	99.02.0.060.59
LED	(110...240)V DC/AC	99.02.0.230.59
LED + Diode (+A 1, standard polarity)	(6...24)V DC	99.02.9.024.99
LED + Diode (+A1, standard polarity)	(28...60)V DC	99.02.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.02.9.220.99
LED + Varistor	(6...24)V DC/AC	99.02.0.024.98
LED + Varistor	(28...60)V DC/AC	99.02.0.060.98
LED + Varistor	(110...240)V DC/AC	99.02.0.230.98
RC circuit	(6...24)V DC/AC	99.02.0.024.09
RC circuit	(28...60)V DC/AC	99.02.0.060.09
RC circuit	(110...240)V DC/AC	99.02.0.230.09
Residual current by-pass	(110...240)V AC	99.02.8.230.07

	PCB socket		97.11 (blue)	97.12 (blue)
	For relay type		46.61	46.52
	Technical data			
	Rated values		$12 \mathrm{~A}-250 \mathrm{~V}$ (see diagram L97)	$8 \mathrm{~A}-250 \mathrm{~V}$
	Dielectric strength		$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil	and contacts
97.1	Protection category		IP 20	
Approvals (according to type):	Ambient temperature	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	

L 97 - Rated current vs ambient temperature
(for 46.61 relay / 97.11 socket combination)

97.12

Approvals
(according to type):

97.11

Copper side view

Copper side view

Packaging codes

How to code and identify retaining clip and packaging options for sockets.
Example:

Features

Plug-in mount, general purpose
2, 3 \& 4 Pole relays
55.32-2 Pole 10 A
55.33-3 Pole 10 A
55.34-4 Pole 7 A

- Lockable test button and mechanical flag indicator as standard on $2 \& 4$ pole types
- AC coils \& DC coils
- UL Listing (certain relay/socket combinations)
- Cadmium Free contacts
- Contact material options
- 94 series sockets
- Coil EMC suppression
- Timer accessories 86 series
- European Patent

For Ul ratings see:
"General technical information" page V

Contact specification

Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load AC 1
Rated load AC15 (230 V AC)
Single phase motor rating (230 VAC) kW
Breaking capacity DC $1: 30 / 110 / 220 \mathrm{~V}$ A

Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	

Coil specification

Nominal voltage (UN) $\frac{V \operatorname{AC}(50 / 60 \mathrm{~Hz})}{\text { V DC }}$
Rated power AC/DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range AC

	DC
Holding voltage	AC/DC
Must drop-out voltage	AC/DC

Must drop-out voltage AC/DC

Technical data

Mechanical life AC/DC cycles
Electrical life at rated load AC 1 cycles
Operate/release time ms
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV
Dielectric strength between open contacts V AC
Ambient temperature range ${ }^{\circ} \mathrm{C}$

Environmental protection
Approvals (according to type)

- 2 pole, 10 A
- Plug-in 94 series sockets
55.33

- 3 pole, 10 A
- Plug-in 94 series sockets
55.34

- 4 pole, 7 A - Plug-in 94 series sockets

6-12-24-48-60-110-120-230-240
6-12-24-48-60-110-125-220

1.5/1	1.5/1	1.5/1
$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
$0.8 U_{N} / 0.5 U_{N}$	$0.8 U_{N} / 0.5 U_{N}$	$0.8 U_{N} / 0.5 U_{N}$
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
$20 \cdot 10^{6} / 50 \cdot 10^{6}$	$20 \cdot 10 \% / 50 \cdot 10^{6}$	$20 \cdot 10 \% / 50 \cdot 10^{6}$
$200 \cdot 10^{3}$	$200 \cdot 10^{3}$	$150 \cdot 10^{3}$
10/5	10/5	11/3
4	4	4
1,000	1,000	1,000
$-40 \ldots+85$	$-40 \ldots+85$	$-40 \ldots+85$
RT I	RT I	RT I
ANCE (CC) (1) (D) EH[Fi PG (1) klove		NA (S) $\mathrm{cri}_{\text {us }}$

Ordering information

Example: 55 series plug-in relay, 4 CO (4PDT), 12 V DC coil, lockable test button and mechanical indicator.

Selecting features and options: only combinations in the same row are possible. Preferred selections for best availability are shown in bold.

Type	Coil version	A	B	C	D
$55.32 / 34$	AC-DC	$0-5$	0	0	0
	AC	$\mathbf{0}-5$	$\mathbf{0}$	$2-3-\mathbf{4 - 5}$	$\mathbf{0}$
	AC	$0-5$	0	54	$/$
	DC	$\mathbf{0}-5$	$\mathbf{0}$	$2-\mathbf{4}-6-7-8-9$	$\mathbf{0}$
	DC	$0-5$	0	$74-94$	$/$
	AC-DC	$\mathbf{0 - 5}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
	AC	$0-5$	0	$1-3-5$	0
	DC	$0-5$	0	$1-6-7-8-9$	0
$55.12 / 13 / 14$	AC-DC	$\mathbf{0}-5$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}-1$

D
0

D: Special versions
= Standard
$=$ Wash tight (RT III)
for $55.12,55.13$ and 55.14 only

C: Options

$=$ None
= Lockable test button
= Mechanical indicator
$=\operatorname{LED}(\mathrm{AC})$
= Lockable test button+mechanical indicator
$=$ Lockable test button + LED (AC)
54 = Lockable test button + LED (AC) + mechanical indicator
6* = Double LED (DC non-polarized)
7* = Lockable test button + double LED (DC non-polarized)
74* $=$ Lockable test button + double LED (DC non-polarized) + mechanical indicator
8* = LED + diode (DC, polarity positive to pin $\mathrm{Al} / 13$)
9* = Lockable test button + LED + diode (DC, polarity positive to pin Al/13)
94* = Lockable test button + LED + diode (DC, polarity positive to pin $\mathrm{Al} / 13$)

+ mechanical indicator
* Option not available for the 220 V DC version.

Descriptions: options and special versions

C: Option 3, 5, 54
LED (AC)

C: Option 6, 7, 74
Double LED
(DC non-polarized)

C: Option 8, 9, 94
LED + diode (DC, polarity
positive to pin $\mathrm{Al} / 13$)

Lockable test button and mechanical flag indicator (0010, 0040, 0050, 0054, 0070, 0074, 0090, 0094)
The dual-purpose Finder test button can be used in two ways:
Case 1) The plastic pip (located directly above the test button) remains intact. In this case, when the test button is pushed, the contacts operate. When the test button is released the contacts return to their former state.
Case 2) The plastic pip is broken-off (using an appropriate cutting tool). In this case, (in addition to the above function), when the test button is pushed and rotated, the contacts are latched in the operating state, and remain so until the test button is rotated back to its former position. In both cases ensure that the test button actuation is swift and decisive.

Technical data

Contact specification

F 55 - Electrical life (AC) v contact current
2 and 3 pole relays

F 55 - Electrical life (AC) v contact current 4 pole relay

H 55 - Maximum DC1 breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100.10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications

DC coil data

R 55 - DC coil operating range v ambient temperature

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

AC coil data

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at $\mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz})$
		$U_{\min }$	$U_{\max }$		
V		V	V	Ω	mA
6	8.006	4.8	6.6	12	200
12	8.012	9.6	13.2	50	97
24	8.024	19.2	26.4	190	53
48	8.048	38.4	52.8	770	25
60	8.060	48	66	1,200	21
110	8.110	88	121	4,000	12.5
120	8.120	96	132	4,700	12
230	8.230	184	253	17,000	6
240	8.240	192	264	19,100	5.3

R 55-AC coil operating range v ambient temperature

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Accessories

056.27

Top 35 mm rail (EN 60715) adaptor for $55.32,55.33,55.34$

056.27

056.27 with relay

| | Module | Socket | Relay | Description | Mounting | Accessories |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 99.01 | 94.82 | 55.32 | Screw terminal (Plate clamp) socket
 -23 mm wide for space saving | Panel or 35 mm rail
 (EN 60715) | - Coil indication and EMC
 suppression modules | |

Socket	Relay	Description	Mounting	Accessories
94.84.2	55.32	Screw terminal (Box clamp) socket	Panel or 35 mm rail (EN 60715) mount	- Coil indication and EMC suppression modules - Jumper link - Plastic retainig and release clip
	55.34			
94.82.3	55.32			
94.84.3	55.32			
	55.34			

See page 10

$\left.\begin{array}{|c|c|c|l|l|l|}\hline \text { Module } & \text { Socket } & \text { Relay } & \text { Description } & \text { Mounting } & \text { Accessories } \\ \hline 99.80 & 94.92 .3 & 55.32 & \text { Screw terminal (Box clamp) socket } & \text { Panel or 35 mm rail } & \text { - Coil indication and EMC } \\ \hline & 94.94 .3 & 55.32 & \text { - Top terminals - Contacts } & \text { (EN 60715) mount } \\ \text { suppression modules } \\ \text { - Jumper link }\end{array}\right\}$

See page 11

Module	Socket	Relay	Description	Mounting	Accessories	
$\mathbf{-}$	$\mathbf{9 4 . 1 2}$	55.32	PCB sockets	PCB mounting	- Metal retaining clip	
See page 12	-	$\mathbf{9 4 . 1 3}$	55.33			
	-	$\mathbf{9 4 . 1 4}$	55.32			

Module	Socket	Relay	Description	Mounting	Accessories	
-	$\mathbf{9 4 . 2 2}$	55.32	Panel mount with solder connections	Panel mount on 1 mm thick panel	- Metal retaining clip	
See page 12	-	$\mathbf{9 4 . 2 3}$	55.33			
	-	$\mathbf{9 4 . 2 4}$	55.32			

86 series timer modules
(12...24)V AC/DC; Bi-function: AI, DI; (0.05s...100h)
(110...125)V AC; Bi-function: AI, DI; (0.05s...100h)
86.30.0.024.0000
(230...240)V AC; Bi-function: AI, DI; (0.05s...100h)
86.30.8.120.0000
86.30.8.240.0000

Approvals
(according to type): $C \in E H\left[\right.$ PG c $\boldsymbol{I I}_{\text {US }}^{\oplus}$

99.02

Approvals (according to type):

DC Modules with non-standard polarity (+A2) on request.
99.02 coil indication and EMC suppression modules for $94.02,94.03$ and 94.04 sockets

Diode (+A 1, standard polarity)	(6...220)V DC	99.02.3.000.00
LED	(6..24)V DC/AC	99.02.0.024.59
LED	(28...60)V DC/AC	99.02.0.060.59
LED	(110...240)V DC/AC	99.02.0.230.59
LED + Diode (+A1, standard polarity)	(6...24)V DC	99.02.9.024.99
LED + Diode (+A1, standard polarity)	(28...60)V DC	99.02.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.02.9.220.99
LED + Varistor	(6...24)V DC/AC	99.02.0.024.98
LED + Varistor	(28...60)V DC/AC	99.02.0.060.98
LED + Varistor	(110...240)V DC/AC	99.02.0.230.98
RC circuit	(6...24)V DC/AC	99.02.0.024.09
RC circuit	(28...60)V DC/AC	99.02.0.060.09
RC circuit	(110...240)V DC/AC	99.02.0.230.09
Residual current by-pass	(110...240)V AC	99.02.8.230.07

060.72

Screwless terminal socket 35 mm rail (EN 60715) mount
For relay type

Accessories

Metal retaining clip

Plastic retaining and release clip		094.91 .3	
6-way jumper link		094.56	
Modules (see table below)		99.02, 86.30	
Sheet of marker tags, 72 tags, $6 \times 12 \mathrm{~mm}$		060.72	
Technical data			
Rated values		$10 \mathrm{~A}-250 \mathrm{~V}$	
Dielectric strength		2 kV AC	
Protection category		IP 20	
Ambient temperature	${ }^{\circ} \mathrm{C}$	-25...+70	
Wire strip length	mm	10	
Max. wire size for 94.54 socket		solid wire	stranded wire
	mm^{2}	$2 \times(0.2 \ldots 1.5)$	$2 \times(0.2 \ldots 1.5)$
	AWG	$2 \times(24 \ldots 14)$	2x(24...14)

86 series timer modules

$(12 \ldots 24) \mathrm{V} \mathrm{AC} / \mathrm{DC} ;$ Bi-function: AI, DI; (0.05s...100h)	86.30 .0 .024 .0000
$(110 \ldots 125) \mathrm{V} \mathrm{AC} ;$ Bi-function: AI, DI; (0.05s...100h)	86.30 .8 .120 .0000
$(230 \ldots 240) \mathrm{V} \mathrm{AC} ;$ Bi-function: AI, DI; (0.05s...100h)	86.30 .8 .240 .0000

Approvals

99.02 coil indication and EMC suppression modules for 94.54 sockets

Diode (+A 1, standard polarity)	(6...220)V DC	99.02.3.000.00
LED	(6...24)V DC/AC	99.02.0.024.59
LED	(28...60)V DC/AC	99.02.0.060.59
LED	(110...240)V DC/AC	99.02.0.230.59
LED + Diode (+A 1, standard polarity)	(6...24)V DC	99.02.9.024.99
LED + Diode (+A 1, standard polarity)	(28...60)V DC	99.02.9.060.99
LED + Diode (+A 1, standard polarity)	(110...220)V DC	99.02.9.220.99
LED + Varistor	(6...24)V DC/AC	99.02.0.024.98
LED + Varistor	(28...60)V DC/AC	99.02.0.060.98
LED + Varistor	(110...240)V DC/AC	99.02.0.230.98
RC circuit	(6...24)V DC/AC	99.02.0.024.09
RC circuit	(28...60)V DC/AC	99.02.0.060.09
RC circuit	(110...240)V DC/AC	99.02.0.230.09
Residual current by-pass	(110...240)V AC	99.02.8.230.07

Approvals (according to type):
EH[©G $\mathrm{c}_{\boldsymbol{7}}^{\mathrm{US}}$

DC Modules with non-standard polarity (+A2) on request.
(12...24)V AC/DC; Bi-function: AI, DI; (0.05s...100h)
094.56 (blue)

10 A - 250 V
(110...125)V AC; Bi-function: AI, DI; (0.05s...100h)
86.30.8.240.0000
86.30

促
94.54 (blue)
55.32, 55.34
094.71
094.91 .3
094.56
99.02, 86.30
060.72

10 A - 250 V
2 kV AC
IP 20

10

solid wire	stranded wire
$2 \times(0.2 \ldots 1.5)$	$2 \times(0.2 \ldots 1.5)$
$2 \times(24 \ldots 14)$	$2 \times(24 \ldots 14)$

$+$

Screw terminal (Plate clamp) socket panel or 35 mm (EN 60715) rail mount	94.72 Blue	94.72 .0 Black	94.73 Blue	94.73 .0 Black	94.74 Blue	94.74.0 Black
For relay type	55.32		55.33		55.32, 55.34	
Accessories						
Metal retaining clip (supplied with socket - packaging code SMA)	094.71					
Modules (see table below)	99.01					
Screw terminal (Plate clamp) socket: panel or 35 mm rail mount	94.82 (blue)			94.82 .0 (black)		
For relay type	55.32			55.32		
Accessories						
Metal retaining clip (supplied with socket - packaging code SMA)	094.71					
Modules (see table below)	99.01					
Technical data						
Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$					
Dielectric strength	2 kV AC					
Protection category	IP 20					
Ambient temperature ${ }^{\circ} \mathrm{C}$	-40...+70					
(44) Screw torque Nm	0.5					
Wire strip length mm	8 (94.72/73/74)			9 (94.82)		
Max. wire size for 94.72/73/74 and 94.82 sockets	solid wire			stranded wire		
mm^{2}	$1 \times 2.5 / 2 \times 1.5$			$1 \times 2.5 / 2 \times 1.5$		
AWG	$1 \times 14 / 2 \times 16$			$1 \times 14 / 2 \times 16$		

* Modules in Black housing are available on request

Green LED is standard Red LED available on request.

Approvals (according to type):

99.01 coil indication and EMC suppression modules for $94.72,94.73,94.74$ and 94.82 sockets

		Blue*
Diode (+A1, standard polarity)	(6...220)V DC	99.01.3.000.00
Diode (+A2, non standard polarity)	(6...220)V DC	99.01.2.000.00
LED	(6...24)V DC/AC	99.01.0.024.59
LED	(28...60)V DC/AC	99.01.0.060.59
LED	(110...240)V DC/AC	99.01.0.230.59
LED + Diode (+A 1, standard polarity)	(6...24)V DC	99.01.9.024.99
LED + Diode (+A1, standard polarity)	(28...60)V DC	99.01.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.01.9.220.99
LED + Diode (+A2, non standard polarity)	(6...24)V DC	99.01.9.024.79
LED + Diode (+A2, non standard polarity)	(28...60)V DC	99.01.9.060.79
LED + Diode (+A2, non standard polarity)	(110...220)V DC	99.01.9.220.79
LED + Varistor	(6...24)V DC/AC	99.01.0.024.98
LED + Varistor	(28...60)V DC/AC	99.01.0.060.98
LED + Varistor	(110...240)V DC/AC	99.01.0.230.98
RC circuit	(6...24)V DC/AC	99.01.0.024.09
RC circuit	(28...60)V DC/AC	99.01.0.060.09
RC circuit	(110...240)V DC/AC	99.01.0.230.09
Residual current by-pass	(110...240)V AC	99.01.8.230.07

94 Series - Sockets and accessories for 55 series relays

Screw terminal (Box clamp) socket panel or 35 mm	9
(EN 60715) rail mount	B
For relay type	5
Accessories	
Metal retaining clip (supplied with socket - packaging code SMA)	
Pla	

94.82.3	94.82 .30	94.84 .3	94.84 .30
Blue	Black	Blue	Black
55.32		$55.32,55.34$	

Plastic retaining and release clip	094
6-way jumper link	094
Identification tag	

Modules (see table next page)
Sheet of marker tags for retaining and release clip 094.91.3 plastic, 72 tags, $6 \times 12 \mathrm{~mm}$

Screw terminal (Box clamp) socket panel or 35 mm	$\mathbf{9 4 . 8 4 . 2}$	94.84 .20 (EN 60715) rail mount
Blue	Black	
For relay type	$55.32,55.34$	

Accessories

Metal retaining clip (supplied with socket - packaging code SMA)	094.71	
Plastic retaining and release clip	094.91 .3	094.91 .30
6-way jumper link	094.06	094.06.0
Identification tag	094.80 .3	
Modules (see table next page)	99.80	
Sheet of marker tags for retaining and release clip 094.91.3 plastic, 72 tags, $6 \times 12 \mathrm{~mm}$	060.72	
Technical data		
Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$	
Dielectric strength	2 kV AC	
Protection category	IP 20	
Ambient temperature ${ }^{\circ} \mathrm{C}$	-40...+70	
(4f) Screw torque Nm	0.5	
Wire strip length mm	7	
Max. wire size for 94.82.3, 94.84.3 and	solid wire	stranded wire
94.84 .2 sockets mm^{2}	1x6/2x2.5	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

060.72

94.84.2

Approvals (according to type):

Screw terminal (Box clamp) socket panel or 35 mm rail mount	94.9
For relay type	5
Accessories	
Metal retaining clip	094
Plastic retaining and release clip	09
6-way jumper link	
Identification tag	
Modules (see table below page)	
Sher	

94.92.3 (blue) 94.92 .30 (black) 94.94 .3 (blue) 94.94 .30 (black)
55.32
55.32, 55.34

Sheet of marker tags for retaining and release clip 094.91 .3
plastic, 72 tags, $6 \times 12 \mathrm{~mm}$

Technical data

Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$	
Dielectric strength	2 kV AC	
Protection category		IP 20
${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$	
Ambient temperature	Nm	0.5
(4) Screw torque	mm	8
Wire strip length		solid wire
Max. wire size for 94.92.3 and 94.94.3 sockets	mm^{2}	$1 \times 6 / 2 \times 2.5$
	AWG	$1 \times 10 / 2 \times 14$

060.72

6-way jumper link for 94.84.2,94.82.3, 94.84.3, 94.92 .3 and 94.94 .3 sockets 094.06 (blue) |094.06.0 (black)
Rated values
10 A - 250 V

Approvals (according to type):
EH[©

* Modules in Black housing are available on request.	
	Green LED is standard. Red LED available

99.80 coil indication and EMC suppression modules for $94.84 .2,94.82 .3,94.84 .3,94.92 .3$ and 94.94 .3 sockets

		Blue*
Diode (+A1, standard polarity)	(6...220)V DC	99.80.3.000.00
LED	(6...24)V DC/AC	99.80.0.024.59
LED	(28...60)V DC/AC	99.80.0.060.59
LED	(110...240)V DC/AC	99.80.0.230.59
LED + Diode (+A1, standard polarity)	(6...24)V DC	99.80.9.024.99
LED + Diode (+A1, standard polarity)	(28...60)V DC	99.80.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.80.9.220.99
LED + Varistor	(6..24)V DC/AC	99.80.0.024.98
LED + Varistor	(28...60)V DC/AC	99.80.0.060.98
LED + Varistor	(110...240)V DC/AC	99.80.0.230.98
RC circuit	(6...24)V DC/AC	99.80.0.024.09
RC circuit	(28...60)V DC/AC	99.80.0.060.09
RC circuit	(110...240)V DC/AC	99.80.0.230.09
Residual current by-pass	(110...240)V AC	99.80.8.230.07

Approvals (according to type):
CE (1/ EH[PG
(H) $c \boldsymbol{n}_{\mathrm{US}}$

94.32

94.33

94.34

Packaging codes

How to code and identify retaining clip and packaging options for sockets.
Example:

Features

Plug-in-12 A Power relay, 2 \& 4 pole

- Flange mount option -
(Faston 187, $4.8 \times 0.5 \mathrm{~mm}$ termination)
- AC coils \& DC coils
- Lockable test button and mechanical flag indicator
- Cadmium Free contacts (standard version)
- Contact material options
- 96 series sockets
- Coil EMC suppression
- Accessories
- European Patent

$4.8 \sqrt{4}$

56.34
* For 4 CO (4PDT) only.

For Ul ratings see:
"General technical information" page V

Contact specification

Contact configuration

| Rated current/Maximum peak current $\quad \mathrm{A}$ |
| :--- | ---: |
| Rated voltage/Maximum switching voltage V AC |

Rated load AC1
Rated load AC15 (230 V AC) VA
Single phase motor rating (230 VAC) kW
Breaking capacity DC1:30/110/220 V A
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material
Coil specification
Nominal voltage $\left(U_{N}\right) \quad$ V AC $(50 / 60 \mathrm{~Hz})$

	V DC
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC
Holding voltage	DC
Must drop-out voltage	$\mathrm{AC} / \mathrm{DC}$

Technical data

Mechanical life AC/DC	cycles
Electrical life at rated load AC1	cycles

Operate/release time	ms
Insulation between coil and contacts $(1.2 / 50 \mu \mathrm{~s})$	kV

$\stackrel{\text { © }}{\stackrel{\text { E. }}{\text { © }}}$ Dielectric strength between open contacts V AC
Ambient temperature range
Environmental protection
Approvals (according to type)

56.32/56.34 - 2 or 4 pole changeover contact - Plug-in/Faston 187	56.32-0300 - 2 pole normally open contact ($\geq 1.5 \mathrm{~mm}$ gap) - Plug-in/Faston 187
	56.32-0300
2 CO (DPDT) 4 CO (4PDT)	2 NO (DPST-NO) - $\geq 1.5 \mathrm{~mm}$ gap
12/20	12/20
250/400	250/400
3,000	3,000
700	700
0.55	0.55
12/0.5/0.25	12/1/0.5
500 (10/5)	500 (10/5)
AgNi	AgNi
6-12-24-48-60-110-120-230-240-400*	
6-12-24-48-60-110-125-220	-
1.5/1 2/1.3	1.5/-
$(0.8 \ldots 1.1) U_{N}$	$(0.85 \ldots 1.1) U_{N}$
$(0.8 \ldots 1.1) U_{N} \quad(0.85 \ldots 1.1) U_{N}$	-
$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$	$0.85 \mathrm{U}_{\mathrm{N}} /-$
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} /-$
$20 \cdot 10^{6} / 50 \cdot 10^{6}$	$20 \cdot 10 \%-$
$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
8/3 10/4	8/4
4 - 5	4
1,000	2,000
$-40 \ldots+70$	$-40 \ldots+70$
RTI	RT I
CE (1) EH[PG (H)	

Features

Printed circuit mount

12 A Power relay

- 2 \& 4 pole
- AC coils \& DC coils
- Cadmium Free contacts (standard version)
- Contact material option
- RT III (wash tight) option available

* For 4 CO (4PDT) only.

For UL RATINGS SEE:
"General technical information" page V

Contact specification

Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC
Rated load AC1
Rated load AC15 (230 V AC)
Single phase motor rating (230 V AC)
Breaking capacity DC 1:30/110/220 V A
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact m
Coil specification
Nominal voltage $\left(\mathrm{U}_{\mathrm{N}}\right) \quad$ V AC $(50 / 60 \mathrm{~Hz})$
Rated power AC/DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range

Holding voltage

Must drop-out voltage AC/DC

Technical data

Mechanical life AC/DC	cycles
Electrical life at rated load AC1	cycles

Operate/release time	ms
Insulation between coil and contacts $(1.2 / 50 \mu \mathrm{~s})$	kV

Dielectric strength between open contacts VAC
Ambient temperature range
Environmental protection
Approvals (according to type)

56.42/56.44 - 2 or 4 pole changeover contact - PCB mount	$56.42-0300$ - 2 pole normally open contact ($\geq 1.5 \mathrm{~mm}$ gap) - PCB mount
	56.42-0300 Copper side view
2 CO (DPDT) 4 CO (4PDT)	2 NO (DPST-NO) - $\geq 1.5 \mathrm{~mm}$ gap
12/20	12/20
250/400	250/400
3,000	3,000
700	700
0.55	0.55
12/0.5/0.25	12/1/0.5
500 (10/5)	500 (10/5)
AgNi	AgNi
6-12-24-48-60-110-120-230-240-400*	
6-12-24-48-60-110-125-220	-
1.5/1 2/1.3	1.5/-
$(0.8 \ldots 1.1) U_{N}$	$(0.85 \ldots 1.1) U_{N}$
$(0.8 \ldots 1.1) U_{N} \quad(0.85 \ldots 1.1) U_{N}$	-
$0.8 U_{N} / 0.6 U_{N}$	$0.85 \mathrm{U} /-$
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{UN} /-$
$20 \cdot 10^{6} / 50 \cdot 10^{6}$	$20 \cdot 10^{6} /-$
$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
8/3 10/4	8/4
4 5	4
1,000	2,000
$-40 \ldots+70$	$-40 \ldots+70$
RT I	RT I
(1) EH[PG (H) R	

Ordering information

Example: 56 series plug-in relay, 2 CO (DPDT), 12 V DC coil, lockable test button and mechanical indicator.

Descriptions: options and special versions

C: Option 3, 5, 54 LED (AC)

C: Option 6, 7, 74
Double LED
(DC non-polarized)

C: Option 8, 9, 94
LED + diode (DC, polarity positive to pin 7) -
(56.32 only)

Lockable test button and mechanical flag indicator (0040, 0050, 0054, 0070, 0074, 0090, 0094) The dual-purpose Finder test button can be used in two ways:
Case 1) The plastic pip (located directly above the test button) remains intact. In this case, when the test button is pushed, the contacts operate. When the test button is released the contacts return to their former state.
Case 2) The plastic pip is broken-off (using an appropriate cutting tool). In this case, (in addition to the above function), when the test button is pushed and rotated, the contacts are latched in the operating state, and remain so until the test button is rotated back to its former position. In both cases ensure that the test button actuation is swift and decisive.

Technical data
*Only in applications where over voltage category II is permitted. In applications of over voltage category III: Micro-disconnection

Insulation according to EN 61810-1	2-CO-4CO	2 NO
Nominal voltage of supply system V AC	230/400	230/400
Rated insulation voltage V AC	250 年 400	250 (400
Pollution degree	$3 \mathrm{l\mid l}$	$3 \mathrm{l\mid l}$
Insulation between coil and contact set		
Type of insulation	Basic	Basic
Overvoltage category	III	III
Rated impulse voltage kV (1.2/50 $\mu \mathrm{s}$)	4	4
Dielectric strength V AC	2,500	2,500
Insulation between adjacent contacts		
Type of insulation	Basic	Basic
Overvoltage category	III	III
Rated impulse voltage kV (1.2/50 μ s)	4	4
Dielectric strength V AC	2,500	2,500
Insulation between open contacts		
Type of disconnection	Micro-disconnection	Full-disconnection*
Overvoltage category	-	II
Rated impulse voltage kV (1.2/50 $\mu \mathrm{s}$)	-	2.5
Dielectric strength V AC/(1.2/50 $\mu \mathrm{s}$)	1,000/1.5	2,000/3
Conducted disturbance immunity		
Burst ($5 \ldots 50$) ns, 5 kHz , on A1-A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s}$) on A1 - A2 (differential mode)	EN 61000-4-5	level 4 (4 kV)
Other data		
Bounce time: $\mathrm{NO} / \mathrm{NC} \mathrm{ms}$	1/4 (changeover)	3/- (normally open)
Vibration resistance (10...150 Hz): NO/NC g	17/14	
Shock resistance NO/NC g	20/14	
Power lost to the environment without contact current W	$1(56.32,56.42)$	$1.3(56.34,56.44)$
with rated current W	3.8 (56.32, 56.42)	$6.9(56.34,56.44)$
Recommended distance between relays mounted on PCB mm	≥ 5	

Contact specification

F 56 - Electrical life (AC) v contact current
2-4 pole relays

H 56 - Maximum DC1 breaking capacity
Changeover version

H 56 - Maximum DC1 breaking capacity
Normally open version

- When switching a resistive load ($\mathrm{DC1}$) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time of the load will be increased.

Coil specifications

DC coil data, 2 pole relay

$\left.$| Nominal
 voltage
 U_{N} | Coil
 code | | Operating range | | Resistance |
| :---: | :---: | :---: | :---: | ---: | :---: | | Rated coil |
| :---: |
| consumption | \right\rvert\,

DC coil data, 4 pole relay

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at U_{N}
		$U_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
V		V	V	Ω	mA
6	9.006	5.1	6.6	32.5	185
12	9.012	10.2	13.2	123	97
24	9.024	20.4	26.4	490	49
48	9.048	40.8	52.8	1,800	27
60	9.060	51	66	3,000	20
110	9.110	93.5	121	10,400	10.5
125	9.125	107	138	14,200	8.8
220	9.220	187	242	44,000	5

R 56 - DC coil operating range v ambient temperature

 2 pole relay

R 56 - DC coil operating range v ambient temperature 4 pole relay

AC coil data, 2 pole relay

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption$\text { I at } U_{N}(50 \mathrm{~Hz})$
		$U_{\text {min }}$ *	$\mathrm{U}_{\text {max }}$		
V		V	V	Ω	mA
6	8.006	4.8	6.6	12	200
12	8.012	9.6	13.2	50	97
24	8.024	19.2	26.4	190	53
48	8.048	38.4	52.8	770	25
60	8.060	48	66	1,200	21
110	8.110	88	121	3,940	12.5
120	8.120	96	132	4,700	12
230	8.230	184	253	17,000	6
240	8.240	192	264	19,100	5.3

* $U_{\text {min }}=0.85 U_{N}$ for normally open version.

AC coil data, 4 pole relay

Nominal voltage U_{N} V	Coil code	Operating range		Resistance R	Rated coil consumption I at $U_{N}(50 \mathrm{~Hz})$
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
		V	V	Ω	mA
6	8.006	4.8	6.6	5.7	300
12	8.012	9.6	13.2	22	150
24	8.024	19.2	26.4	81	90
48	8.048	38.4	52.8	380	37
60	8.060	48	66	600	30
110	8.110	88	121	1,900	16.5
120	8.120	96	132	2,560	13.4
230	8.230	184	253	7,700	9
240	8.240	192	264	10,000	7.5
400	8.400	320	440	26,000	4.9

R 56-AC coil operating range v ambient temperature

2 pole relay

R 56-AC coil operating range v ambient temperature
4 pole relay

1-Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Accessories

056.25

056.26

Top 35 mm rail (EN 60715) adaptor for 56.32

056.25 with relay

056.25 with relay

056.27

056.26 with relay
056.27

056.27 with relay
056.45

056.45 with relay

056.45
056.47

056.47 with relay

| Sheet of marker tags for relay type 56.34, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$ | 060.72 |
| :--- | :--- | :--- |

060.72

094.91 .3

L 96 - Rated current vs ambient temperature

$96.02 \quad 96.02$

96.04

96.04

6-way jumper link for 96.02 socket
094.06 (blue)
094.06 .0 (black)

Rated values
10 A - 250 V

Approvals (according to type):
EHL ©C. ©9Nus
DC Modules with non-standard polarity (+A2) on request.

86 series timer modules

Multi-voltage: (12...240)V AC/DC;

Multi-functions: Al, DI, SW, BE, CE, DE, EE, FE; (0.05 s... 100 h)	86.00.0.240.0000
(12...24)V AC/DC; Bi-function: Al, DI; (0.05 s... 100 h)	86.30.0.024.0000
(110...125)V AC; Bi-function: Al, DI; (0.05s...100h)	86.30.8.120.0000
(230...240)V AC; Bi-function: Al, DI; (0.05 s... 100 h)	86.30.8.240.0000

99.02 coil indication and EMC suppression modules for 96.02 and 96.04 sockets

Diode (+A1, standard polarity)	(6...220)V DC	99.02.3.000.00
LED	(6...24)V DC/AC	99.02.0.024.59
LED	(28...60)V DC/AC	99.02.0.060.59
LED	(110...240)V DC/AC	99.02.0.230.59
LED + Diode (+A1, standard polarity)	(6...24)V DC	99.02.9.024.99
LED + Diode (+A1, standard polarity)	(28...60)V DC	99.02.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.02.9.220.99
LED + Varistor	(6...24)V DC/AC	99.02.0.024.98
LED + Varistor	(28...60)V DC/AC	99.02.0.060.98
LED + Varistor	(110...240)V DC/AC	99.02.0.230.98
RC circuit	(6...24)V DC/AC	99.02.0.024.09
RC circuit	(28...60)V DC/AC	99.02.0.060.09
RC circuit	(110...240)V DC/AC	99.02.0.230.09
Residual current by-pass	(110...240)V AC	99.02.8.230.07

Multi-functions: AI, DI, SW, BE, CE, DE, EE, FE; (0.05 s... 100 h)
.24 $\mathrm{AC} / \mathrm{DC}$; B Fucion. Al, D;
(110...125)V AC; Bi-function: Al, DI; (0.05s...100h)

Approvals (according to type):

(\in © ll EHC

 ${ }^{c} 7 \mathrm{H}_{\text {us }}^{\circ}$

Approvals (according to type):

(\in © CHIC
 cins

Approvals (according to type):

Green LED is standard. Red LED available on request.

99.01 coil indication and EMC suppression modules for types 96.72 and 96.74 sockets

		Blue*
Diode (+Al, standard polarity)	(6...220)V DC	99.01.3.000.00
Diode (+A2, non-standard polarity)	(6...220)V DC	99.01.2.000.00
LED	(6...24)V DC/AC	99.01.0.024.59
LED	(28...60)V DC/AC	99.01.0.060.59
LED	(110...240)V DC/AC	99.01.0.230.59
LED + Diode (+AI, standard polarity)	(6...24)V DC	99.01.9.024.99
LED + Diode (+A1, standard polarity)	(28...60)V DC	99.01.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.01.9.220.99
LED + Diode (+A2, non-standard polarity)	(6..24)V DC	99.01.9.024.79
LED + Diode (+A2, non-standard polarity)	(28...60)V DC	99.01.9.060.79
LED + Diode (+A2, non-standard polarity)	(110...220)V DC	99.01.9.220.79
LED + Varistor	(6..24)V DC/AC	99.01.0.024.98
LED + Varistor	(28...60)V DC/AC	99.01.0.060.98
LED + Varistor	(110...240)V DC/AC	99.01.0.230.98
${ }^{\text {RC circuit }}$	(6...24)V DC/AC	99.01.0.024.09
RC circuit	(28...60)V DC/AC	99.01.0.060.09
RC circuit	(110...240)V DC/AC	99.01.0.230.09
Residual current by-pass	(110...240)V AC	99.01.8.230.07

Approvals (according to type):
자 FHI (CC (1)
${ }_{c}{ }^{\circ}{ }^{\circ}{ }^{\circ}$

PCB socket	96.12 (blue)	96.12 .0 (black)	96.14 (blue)	96.14.0 (black)
For relay type	56.32		56.34	
Accessories				
Metal retaining clip (supplied with socket - packaging code SMA)	094.51			
Technical data				
Rated values	15 A-250 V			
Dielectric strength	2 kV AC			
Protection category	IP 20			
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$			

Copper side view 96.12

Packaging code

How to code and identify retaining clip and packaging options for sockets.
Example:

60 Series - General purpose relays 6-10 A

Features

Plug-in mount-6A
Bifurcated contacts for low level switching

- 2 \& 3 pole changeover contacts
- Cadmium Free contacts
(Gold plated Silver Nickel)
- AC coils \& DC coils
- Lockable test button with mechanical flag indicator (preferred version)
- 90 series sockets
- Coil EMC suppression
- Timer accessories 86 series
- European Patent
"General technical information" page V
Contact specification
Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC

Rated load ACl

Rated load AC15 (230 V AC)
Single phase motor rating (230 V AC$) \mathrm{kW}$
Breaking capacity DC1: 30/110/220 V A
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Coil specification

Nominal voltage (U_{N}) \quad V AC $(50 / 60 \mathrm{~Hz})$

	V DC
Rated power AC/DC	VA $(50 \mathrm{~Hz}) / \mathrm{W}$

Operating range	AC

Holding voltage
Must drop-out voltage AC/DC

Technical data

Mechanical life AC/DC cycles	$20 \cdot 106 / 50 \cdot 10^{6}$	$20 \cdot 10^{6} / 50 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$250 \cdot 10^{3}$	$250 \cdot 10^{3}$
Operate/release time ms	11/4	11/4
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}) \mathrm{kV}$	4	3.6
Dielectric strength between open contacts V AC	1,000	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	-40...+70	-40...+70
Environmental protection	RTI	RT I
Approvals (according to type)	C (cce) ©	

- 2 pole, 6 A bifurcated contacts
- 8 pin plug-in

2 CO (DPDT)	
$6 / 10$	
$250 / 400$	
1,500	
250	
0.185	
$6 / 0.3 / 0.12$	
$50(5 / 5)$	
$A g N i+$ Au bifurcated contacts	

6-12-24-48-60-110-120-230-240-400
6-12-24-48-60-110-125-220
\square

$2.2 / 1.3$	
$(0.8 \ldots 1.1) U_{N}$	

2.2/1.3
$(0.8 \ldots 1.1) U_{N}$
$(0.8 \ldots 1.1) U_{N}$
$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
$0 \cdot 10^{6} / 50 \cdot 10^{6}$
$250 \cdot 10^{3}$

1,000
$-40 \ldots+70$
${ }_{c} \mathbf{N I}_{\text {US }}^{\oplus}$

Ordering information

Example: 60 series plug-in relay, 3 CO (3PDT), 12 V DC coil, test button and mechanical indicator.
 Preferred selections for best availability are shown in bold.

Type	Coil version	A	B	C	D
60.12/13	AC	0	0	0-2-3-4-5	0
	AC	0	0	54	/
	AC	5	0-2	0-2-3-4-5	0
	AC	5	0-2	54	/
	DC	0	0	0-2-4-6-7	0
	DC	0	0	74	/
	DC	5	0-2	0-2-4-6-7	0
	DC	5	0-2	74	/
	current sensing	0	0	4	0
60.62/63	AC-DC	0-5	0	0	0

Descriptions: Options and Special versions

Lockable test button and mechanical flag indicator (0040, 0050, 0054, 0070, 0074)
 The dual-purpose Finder test button can be used in two ways:
Case 1) The plastic pip (located directly above the test button) remains intact. In this case, when the test button is pushed, the contacts operate. When the test button is released the contacts return to their former state.
Case 2) The plastic pip is broken-off (using an appropriate cutting tool). In this case, (in addition to the above function), when the test button is pushed and rotated, the contacts are latched in the operating state, and remain so until the test button is rotated back to its former position. In both cases ensure that the test button actuation is swift and decisive.

Technical data

Contact specification

F 60 - Electrical life (AC) v contact current

(A)

Coil specifications

DC coil data

$\left.$| Nominal
 voltage
 U_{N} | Coil
 code | | Operating range | | Resistance |
| :---: | :---: | :---: | :---: | :---: | :---: | | Rated coil |
| :---: |
| consumption | \right\rvert\,

H 60 - Maximum DC1 breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

AC coil data

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption$\text { I at } \mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz})$
		$U_{\text {min }}$	$\mathrm{U}_{\max }$		
V		V	V	Ω	mA
6	8.006	4.8	6.6	4.6	367
12	8.012	9.6	13.2	19	183
24	8.024	19.2	26.4	74	90
48	8.048	38.4	52.8	290	47
60	8.060	48	66	450	37
110	8.110	88	121	1,600	20
120	8.120	96	132	1,940	18.6
230	8.230	184	253	7,250	10.5
240	8.240	192	264	8,500	9.2
400	8.400	320	440	19,800	6

Coil specifications

R 60 - DC coil operating range vambient temperature

1-Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

R 60 - AC coil operating range v ambient temperature

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Current sensing version

Typical application with current sensing relays.
An open circuit filiment of lamp L1 is detected by the current sensing relay coil (Kı) which causes the back-up safety lamp L2 to be energised,
and indication of failure at the control panel via lamp Si.
Example: navigation light.
$\mathrm{L} 1=$ Light
L2 = Safety light
$\mathrm{S}_{1}=$ Control light
$\mathrm{K}_{1}=$ Relay

Current sensing DC coil data

Coil code	$\mathrm{I}_{\min }(\mathrm{A})$	$\mathrm{I}_{N}(\mathrm{~A})$	$\mathrm{I}_{\max }(\mathrm{A})$	$\mathrm{R}(\Omega)$
4202	1.7	2.0	2.4	0.15
4182	1.5	1.8	2.2	0.19
4162	1.4	1.6	1.9	0.24
4142	1.2	1.4	1.7	0.31
4122	1.0	1.2	1.4	0.42
4102	0.85	1.0	1.2	0.61
4092	0.8	0.9	1.1	0.75
4062	0.5	0.6	0.7	1.70
4032	0.25	0.3	0.4	6.70
4012	0.085	0.1	0.15	61

Current sensing AC coil data

Coil code	$\mathrm{I}_{\min }(\mathrm{A})$	$\mathrm{I}_{\mathrm{N}}(\mathrm{A})$	$\mathrm{I}_{\max }(\mathrm{A})$	$\mathrm{R}(\Omega)$
4251	2.1	2.5	3.0	0.05
4181	1.5	1.8	2.2	0.10
4161	1.4	1.6	1.9	0.12
4121	1.0	1.2	1.4	0.22
4101	0.85	1.0	1.2	0.32
4051	0.42	0.5	0.6	1.28
4041	0.34	0.4	0.5	2.00
4031	0.25	0.3	0.4	3.57
4021	0.17	0.2	0.25	8.0
4011	0.085	0.1	0.15	32.1

Other types of current sensing relays are available on request.

Accessories

$\begin{array}{ll}\text { Sheet of marker tags for relay types } 60.12 \text { and } 60.13 \text {, plastic, } 72 \text { tags, } 6 \times 12 \mathrm{~mm} & 060.72\end{array}$
060.72

See page 8	Module99.02	Socket	Relay	Description	Mounting	Accessories
		90.02	60.12	Screw terminal (Box clamp) socket Double A1 terminal	Panel or 35 mm rail (EN 60715) mount	- Coil indication and EMC suppression modules - Jumper link - Timer modules - Metal retaining clip
	an	90.03	60.13			
	Bï)					

90.83 .3

See page 10

See page 11

See page 1

See page 12

Module	Socket	Relay	Description	Mounting	Accessories
-	90.14	60.12	PCB socket	PCB	-
-	90.14 .1	60.12			
-	90.15	60.13			
-	90.15 .1	60.13			

(\in © ll EHC (i1) ${ }^{\prime} \boldsymbol{I I}_{\text {us }}^{\circ}$

panel or 35 mm rail (EN 60715) mount
For relay type
Accessories
Metal retaining clip

90.02	90.02 .0
Blue	Black

60.12

90.03
Blue

90.03.0 Black 60.13

6-way jumper link
090.33
090.06

Identification tag
090.00 .2
99.02

Timer modules (see table below)	$86.00,86.30$

Technical data
Rated values

Dielectric strength	2 kV AC	
Protection category	IP 20	
Ambient temperature	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$

(272) Screw torque Nm

Wire strip length
Max. wire size for 90.02 and 90.03 sockets

mm	10
$\mathrm{~mm}^{2}$	$1 \times 6 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$

	stranded wire
	$1 \times 4 / 2 \times 2.5$
	$1 \times 12 / 2 \times 14$

90.02

86.30

Approvals (according to type):
EHE © $\mathrm{CO}_{\mathrm{Cl}}^{\circ}$

DC Modules with non-standard polarity (+A2) on request.

6-way jumper link for 90.02 and 90.03 sockets
Rated values

090.06 (blue) 090.06.0 (black) 10 A - 250 V

Approvals
(according to type): © (1) EH[c $\mathrm{TI}_{\text {US }}$

86 series timer modules

Multi-voltage: (12...240)V AC/DC;
Multi-functions: AI, DI, SW, BE, CE, DE, EE, FE; ($0.05 \mathrm{~s} \ldots 100 \mathrm{~h}$)
86.00.0.240.0000
(12...24)V AC/DC; Bi-function: AI, DI; (0.05 s... 100 h)
(110...125)V AC; Bi-function: AI, DI; (0.05s... 100h)
86.30.0.024.0000
86.30.8.120.0000
(230...240)V AC; Bi-function: AI, DI; (0.05 s... 100 h)
86.30.8.240.0000

Approvals (according to type): CEEF[PG c PI $_{\text {Us }}$
99.02 coil indication and EMC suppression modules for 90.02 and 90.03 sockets

Diode (+A1, standard polarity)	(6...220)V DC	99.02.3.000.00
LED	(6...24)V DC/AC	99.02.0.024.59
LED	(28...60)V DC/AC	99.02.0.060.59
LED	(110...240)V DC/AC	99.02.0.230.59
LED + Diode (+A1, standard polarity)	(6...24)V DC	99.02.9.024.99
LED + Diode (+A1, standard polarity)	(28...60)V DC	99.02.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.02.9.220.99
LED + Varistor	(6...24)V DC/AC	99.02.0.024.98
LED + Varistor	(28...60)V DC/AC	99.02.0.060.98
LED + Varistor	(110...240)V DC/AC	99.02.0.230.98
RC circuit	(6...24)V DC/AC	99.02.0.024.09
RC circuit	(28...60)V DC/AC	99.02.0.060.09
RC circuit	(110...240)V DC/AC	99.02.0.230.09
Residual current by-pass	(110...240)V AC	99.02.8.230.07

Approvals (according to type):
C $\in \mathbb{C l}$ EHI ©

90.20

90.21

Approvals
(according to type):

EHE ©

* Modules in Black housing are available on request.

Green LED is standard. Red LED available on request.
99.01 coil indication and EMC suppression modules for 90.20 and 90.21 sockets

See technical data page 215/216		Blue*
Diode (+A1, standard polarity)	(6...220)V DC	99.01.3.000.00
Diode (+A2, non-standard polarity)	(6...220)V DC	99.01.2.000.00
LED	(6...24)V DC/AC	99.01.0.024.59
LED	(28...60)V DC/AC	99.01.0.060.59
LED	(110...240)V DC/AC	99.01.0.230.59
LED + Diode (+A1, standard polarity)	(6...24)V DC	99.01.9.024.99
LED + Diode (+A1, standard polarity)	(28...60)V DC	99.01.9.060.99
LED + Diode (+A1, standard polarity)	(110...220)V DC	99.01.9.220.99
LED + Diode (+A2, non-standard polarity)	(6...24)V DC	99.01.9.024.79
LED + Diode (+A2, non-standard polarity)	(28...60)V DC	99.01.9.060.79
LED + Diode (+A2, non-standard polarity)	(110...220)V DC	99.01.9.220.79
LED + Varistor	(6...24)V DC/AC	99.01.0.024.98
LED + Varistor	(28...60)V DC/AC	99.01.0.060.98
LED + Varistor	(110...240)V DC/AC	99.01.0.230.98
RC circuit	(6...24)V DC/AC	99.01.0.024.09
RC circuit	(28...60)V DC/AC	99.01.0.060.09
RC circuit	(110...240)V DC/AC	99.01.0.230.09
Residual current by-pass	(110...240)V AC	99.01.8.230.07

Screw terminal (Box clamp) socket panel or 35 mm rail (EN 60715) mount		$90.82 .3$ Blue	$90.82 .30$ Black	$\begin{aligned} & 90.83 .3 \\ & \text { Blue } \end{aligned}$	$90.83 .30$ Black
For relay type		60.12		60.13	
Accessories					
Metal retaining clip		090.33			
Technical data					
Rated values		$10 \mathrm{~A}-250 \mathrm{~V}$			
Dielectric strength		2 kV AC			
Protection category		IP 20			
Ambient temperature	${ }^{\circ} \mathrm{C}$	-40...+70			
(72) Screw torque	Nm	0.8			
Max. wire size for 90.82 .3 and 90.83 .3 sockets		solid wire		stranded wire	
	mm^{2}	$1 \times 6 / 2 \times 4$		1x6 / 2x4	
	AWG	$1 \times 10 / 2 \times 14$		$1 \times 10 / 2 \times 14$	

Approvals (according to type): C \in © lHC © ${ }^{\mathrm{COH}} \mathrm{N}_{\text {us }}^{\circ}$

Screw (Box clamp) terminal socket panel or 35 mm rail (EN 60715) mount		
For relay type		
Accessories		
Metal retaining clip (supplied with socket - packaging code SMA)		
Technical data		
Rated values		
Dielectric strength		
Protection category		
Ambient temperature	${ }^{\circ} \mathrm{C}$	
(74) Screw torque	Nm	
Wire strip length	mm	
Max wire size for 90.22 and 90.23 sockets		
	mm^{2}	
	AWG	

90.22	90.23
Blue	Blue
60.12	60.13

090.33

$10 \mathrm{~A}-250 \mathrm{~V}$	
2 kV AC	
IP 20	
$-40 \ldots+70$	
0.5	
7	stranded wire
solid wire	$1 \times 6 / 2 \times 2.5$
$1 \times 6 / 2 \times 2.5$	$1 \times 10 / 2 \times 14$
$1 \times 10 / 2 \times 14$	

Approvals (according to type):
CE W EHL PG
(11) $\mathrm{CH}_{\mathrm{US}} \mathrm{DV}_{\mathrm{V}}$

Screw terminal (Plate clamp) socket panel or 35 mm rail (EN 60715) mount	$\begin{aligned} & 90.26 \\ & \text { Blue } \end{aligned}$	$90.26 .0$ Black	$\begin{aligned} & 90.27 \\ & \text { Blue } \end{aligned}$	90.27.0 Black
For relay type	60.12		60.13	
Accessories				
Metal retaining clip (supplied with socket - packaging code SMA)	090.33			
Technical data				
Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$			
Dielectric strength	2 kV AC			
Protection category	IP 20			
Ambient temperature ${ }^{\circ} \mathrm{C}$	-40...+70			
(4) Screw torque Nm	0.8			
Wire strip length mm	10			
Max. wire size for 90.26 and 90.27 sockets	solid wire		stranded wire	
mm^{2}	$1 \times 4 / 2 \times 2.5$		$1 \times 4 / 2 \times 2.5$	
AWG	$1 \times 12 / 2 \times 14$		$1 \times 12 / 2 \times 14$	

Approvals (according to type):

Flange mount solder socket mount with M3 screw	$\mathbf{9 0 . 1 2}$ (black)	$\mathbf{9 0 . 1 3}$ (black)
For relay type	60.12	$\mathbf{6 0 . 1 3}$
Technical data		
Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$	
Dielectric strength	2 kV AC	
Ambient temperature	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$

C \in © CHI C
(10) $\left.{ }^{(1)}\right)_{\text {us }}^{\circ}$

(1) finder

SERIES 90 Series - Sockets and accessories for 60 series relays

PCB socket	Blue Blue	$\begin{aligned} & 90.14(\varnothing 20.5 \mathrm{~mm}) \\ & 90.14 .1(\varnothing 17.5 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 90.15(\varnothing 22 \mathrm{~mm}) \\ & 90.15 .1(\varnothing 19 \mathrm{~mm}) \end{aligned}$
For relay type		60.12	60.13
Technical data			
Rated values		$10 \mathrm{~A}-250 \mathrm{~V}$	
Dielectric strength		2 kV AC	
Ambient temperature	${ }^{\circ} \mathrm{C}$	-40...+70	

(6) EH[PG (H)
 ${ }_{c} \boldsymbol{7 I}_{\text {us }}^{i}$

90.14

90.15

Packaging code

How to code and identify retaining clip and packaging options for sockets.
Example:

62
62 Series - Power relays 16 A
SERIES

Features

Printed circuit mount
 16 A Power relay

- 2 \& 3 Pole changeover contacts or NO ($\geq 3 \mathrm{~mm}$ contact gap)
- AC coils \& DC coils
- Reinforced insulation between coil and contacts according to EN 60335-1, with 6 mm clearance \& 8 mm creepage distance
- SELV coil-contact separator option
- Cadmium Free contact material options
* Distance between contacts $\geq 3 \mathrm{~mm}$ (EN 60730-1).
**With the AgSnO_{2} material the maximum peak current is $120 \mathrm{~A}-5 \mathrm{~ms}$ (NO contact).
For Ul ratings see:
"General technical information" page V
For outline drawing see page 10

Contact specification

Contact configuration

Rated current/Maximum peak current \quad A
Rated voltage/Maximum switching voltage V AC

Rated load AC1	VA
Rated load AC15 (230 V AC)	VA
Motor rating (230/400 V AC)	kW
Breaking capacity DC1: 30/1 10/220 V	A
Minimum switching load	$\mathrm{mW} \mathrm{(V/mA)}$

Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	

Coil specification

62.22 / 62.23

- 2 \& 3 pole changeover contact - PCB mount
62.22-0300 / 62.23-0300

- 2 \& 3 pole normally open contact
($\geq 3 \mathrm{~mm}$ contact gap) - PCB mount

62.22

Copper side view

62.23

Copper side view

2 CO (DPDT)

| 2 CO (DPDT) 3 CO (3PDT) |
| :---: | :---: |
| $16 / 30^{* *}$ |
| $250 / 400$ |
| 4,000 |
| $0.8 /-\quad 0.8 / 1.5$ |
| $16 / 0.6 / 0.4$ |
| $1,000(10 / 10)$ |
| AgCdO |

62.32-0300 / 62.33-0300

- 2 \& 3 pole normally open contact ($\geq 3 \mathrm{~mm}$ contact gap) - Plug-in / Faston 187 - Plug-in / Faston 187

* Distance between contacts $\geq 3 \mathrm{~mm}$ (EN 60730-1)
** With the AgSnO_{2} material the maximum peak current is $120 \mathrm{~A}-5 \mathrm{~ms}$ (NO contact).
For UL ratings see:
"General technical information" page V
For outline drawing see page 10

Contact specification

Contact configuration

Rated current/Maximum peak current $\quad \mathrm{A}$
Rated voltage/Maximum switching voltage V AC

Rated load AC1
Rated load AC15 (230 V AC)
Motor rating (230/400 V AC)

| Breaking capacity DC $1: 30 / 110 / 220 \mathrm{~V} \quad \mathrm{~A}$ |
| :--- | :--- |
| Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$ |

Standard contact material
Coil specification

Nominal voltage (U_{N})	6-12-24-48-60-110-120-230-240-400	
	6-12-24-48-60-110-125-220	
Rated power AC/DC VA (50 Hz)/W	2.2/1.3	3/3
Operating range	$(0.8 \ldots 1.1) U_{N}$	$(0.85 \ldots 1.1) U_{N}$
	$(0.8 \ldots 1.1) U_{N}$	$(0.85 \ldots 1.1) U_{N}$
Holding voltage AC/DC	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Technical data		
Mechanical life AC/DC cycles	$10 \cdot 10^{6} / 30 \cdot 10^{6}$	$10 \cdot 10^{6} / 30 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Operate/release time ms	11/4	15/3
Insulation between coil and contacts (1.2/50 ss) kV	6	6
Dielectric strength between open contacts V AC	1,500	2,500
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	$-40 \ldots+50$
Environmental protection	RT I	RT I
Approvals (according to type)	CE S EHL	

62
62 Series - Power relays 16 A
SERIES

Features

Flange mount/Faston 250 16 A Power relay

- Faston $250(6.3 \times 0.8 \mathrm{~mm})$ termination Flange or optional mounting adaptors
- 2 \& 3 Pole changeover contacts or NO ($\geq 3 \mathrm{~mm}$ contact gap)
- AC coils \& DC coils
- LED, mechanical indicator \& test button options
- Reinforced insulation between coil and contacts according to EN 60335-1, with 6 mm clearance \& 8 mm creepage distance
- SELV coil-contact separator option
- Cadmium Free contact material options
- European Patent
* Distance between contacts $\geq 3 \mathrm{~mm}$ (EN 60730-1).
**With the AgSnO_{2} material the maximum peak current is $120 \mathrm{~A}-5 \mathrm{~ms}$ (NO contact).
For UL ratings see:
"General technical information" page V
For outline drawing see page 10

Contact specification

Contact configuration

Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC

Rated load AC 1
Rated load AC15 (230 V AC)

Motor rating (230/400 V AC)	kW
Breaking capacity DC 1 : 30/110/220 V	A

Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material

Coil specification

 Environmental protection
Approvals (according to type)
62.82 / 62.83

- 2 \& 3 pole changeover contact - Flange mount / Faston 250

62.82
62.83
62.82-0300 / 62.83-0300

- 2 \& 3 pole normally open contact ($\geq 3 \mathrm{~mm}$ contact gap) - Flange mount / Faston 250

62.82-0300
62.83-0300

Features

Plug-in mount/Faston 187
Magnetic blow power relay

- Plug-in (92 series sockets) or Faston 187 ($4.8 \times 0.5 \mathrm{~mm}$) with optional mounting adaptors
- 1 \& 2 Pole NO contacts
- High DC load (resistive and inductive) switching capability
- DC coils
- Reinforced insulation between coil and contacts according to EN 60335-1, with 6 mm clearance \& 8 mm creepage distance
- Cadmium Free contact material
- Sockets and accessories
* Maximum peak current 120 A - 5 ms .

For outline drawing see page 10
Contact specification
Contact configuration

Rated current/Maximum peak current	A	
Rated voltage/Maximum switching voltage V AC		

Rated load AC1 VA	
Breaking	Vapacity DC1: $30 / 125 / 220 \mathrm{~V}$

Breaking capacity $D C 1: 30 / 125 / 220 \mathrm{~V} \quad \mathrm{~A}$
Breaking capacity DC inductive $(\mathrm{L} / \mathrm{R}=40 \mathrm{~ms})$:
30/125/220 V

Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgSnO_{2}	AgSnO_{2}
Coil specification		
Nominal voltage (U_{N}) V DC		220
Rated power DC W	1.3	1.3
Operating range DC	(0.85 ..1.1) U_{N}	$(0.85 \ldots 1.1) U_{N}$
Holding voltage DC	$0.6 \mathrm{U}_{\mathrm{N}}$	$0.6 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage DC	$0.1 \mathrm{U}_{\mathrm{N}}$	$0.1 \mathrm{U}_{\mathrm{N}}$
Technical data		
Mechanical life DC cycles	$10 \cdot 10^{6}$	$10 \cdot 10^{6}$
Electrical life at rated load DC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Operate/release time ms	16/5	16/5
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV	6	6
Dielectric strength between open contacts V AC	3,000	2,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	$-40 \ldots+70$
Environmental protection	RT I	RT I
Approvals (according to type)	$\text { C } \in \quad c \boldsymbol{N}_{\text {us }}^{\infty}$	

Ordering information

Example: 62 series power relay + Faston $250(6.3 \times 0.8 \mathrm{~mm})$, rear flange mount, 2 NO (DPST-NO), 12 V DC coil.

$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$
9 = DC
Coil voltage
See coil specifications

A: Contact material

$0=$ Standard AgCdO
$4=\mathrm{AgSnO}_{2}$ (standard for versions 4800)
B: Contact circuit
$0=\mathrm{CO}(\mathrm{nPDT})$
$3=\mathrm{NO}(\mathrm{nPST})$, $\geq 3 \mathrm{~mm}$ contact gap
$5=\mathrm{CO}(\mathrm{nPDT})+$ additional physical separator between coil and contacts (for SELV applications)
$6=\mathrm{NO}(\mathrm{nPST}), \geq 3 \mathrm{~mm}$ contact gap + additional physical separator between coil and contacts (for SELV applications)
$8=$ NO (1 pole double break or 2 pole) with magnetic blow

Selecting features and options: only combinations in the same row are possible.
Preferred selections for best availability are shown in bold.

D: Special versions
= Standard
= Rear flange mount
$=$ Type 62.82/83 without rear flange mount

C: Options

= None
= Mechanical indicator
$=$ LED (AC)
= Lockable test button + mechanical indicator
5* = Lockable test button + LED (AC)
$54^{*}=$ Lockable test button + LED (AC) + mechanical indicator
6* = LED + diode (DC, polarity positive to pin A/AI)
7* = Lockable test button + LED + diode (DC, polarity positive to pin A/Al)
74* = Lockable test button + LED + diode (DC, polarity positive to pin A/Al) + mechanical indicator

* Options not available for 220 V DC and 400 V AC versions.

Type	Coil version	A	B	C	D
62.22/23	AC-DC	0-4	0-3-5-6	0	0
62.32/33	AC-DC	0-4	0-3-5-6	0	0-6
	AC-DC	0-4	0-5	2-4	0-6
	AC	0-4	0	2-3-4-5	0-6
	AC	0-4	0-3	3	0-6
	AC	0-4	0	54	/
	DC	0-4	0	4-6-7	0-6
	DC	0-4	0-3	6	0-6
	DC	0-4	0	74	/
62.31/32	DC	4	8	0	0
62.82/83	AC-DC	0-4	0-3-5-6	0	0-9
	AC-DC	0-4	0-5	2-4	0
	AC	0-4	0	2-3-4-5	0
	AC	0-4	0-3	3	0
	DC	0-4	0	4-6-7	0
	DC	0-4	0-3	6	0

Descriptions: Options and Special versions

Lockable test button and mechanical flag indicator (0040, 0050, 0054, 0070, 0074)
The dual-purpose Finder test button can be used in two ways:

Case 1) The plastic pip (located directly above the test button) remains intact. In this case, when the test button is pushed, the contacts operate. When the test button is released the contacts return to their former state.
Case 2) The plastic pip is broken-off (using an appropriate cutting tool). In this case, (in addition to the above function), when the test button is pushed and rotated, the contacts are latched in the operating state, and remain so until the test button is rotated back to its former position. In both cases ensure that the test button actuation is swift and decisive.

62 Series - Power relays 16 A

Technical data

Insulation according to EN 61810-1								
	2CO-3 CO		2NO-3 NO		1 NO*		2 NO*	
Nominal voltage of supply system V AC	230/400		230/400		230/400		230/400	
Rated insulation voltage V AC	400		400		400		400	
Pollution degree	3		3		3		3	
Insulation between coil and contact set								
Type of insulation	Reinforced		Reinforced		Reinforced		Reinforced	
Overvoltage category	III		III		III		III	
Rated impulse voltage kV (1.2/50 μ s)	6		6		6		6	
Dielectric strength V AC	4,000		4,000		4,000		4,000	
Insulation between adjacent contacts								
Type of insulation	Basic		Basic		-		Basic	
Overvoltage category	III		III		-		III	
Rated impulse voltage kV (1.2/50 s)	4		4		-		4	
Dielectric strength V AC	2,500		2,500		-		2,500	
Insulation between open contacts								
Type of disconnection	Micro-disconnection		Full-disconnection		Full-disconnection		Full-disconnection**	
Overvoltage category	-		III		III		II	
Rated impulse voltage kV (1.2/50 μ s)	-		4		4		2.5	
Dielectric strength V AC/kV (1.2/50 μ s)	1,500/2		2,500/4		3,000/4		2,000/2.5	
Conducted disturbance immunity								
Burst (5...50)ns, 5 kHz , on A1-A2	EN 61000-4-4				level $4(4 \mathrm{kV})$			
Surge ($1.2 / 50 \mu \mathrm{~s}$) on A1-A2 (differential mode)	EN 61000-4-5				level $4(4 \mathrm{kV})$			
Other data					3/- (normally open)			
Bounce time: NO/NC ms	1/5 (change	over)	3/-	normally open)			3/- (normally open)	
Vibration resistance (10...150) Hz: NO/NC g	20/8							
Shock resistance g	15							
Power lost to the environment	2 pole (CO)	3 pole (CO)		2 pole (NO)	$\begin{array}{\|l\|} \hline 3 \text { pole (NO) } \\ \hline 3 \\ \hline \end{array}$	1 pole (NO)*		2 pole (NO)*
without contact current W	1.3	1.3		3		1.3		1.3
with rated current W	3.3	4.3		5	6	3		3.3
Recommended distance between relays mounted on PCB mm	≥ 5					-		

* Magnetic blow version
** Only in applictaions where over voltage category II is permitted. In applications of over voltage category III: Micro-disconnection.

Contact specification

F 62 - Electrical life (AC) v contact current

H 62 - Maximum DC1 breaking capacity

Changeover contacts

H 62 - Maximum DC1 breaking capacity
Normally open contacts

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC 1 load. Note: the release time of the load will be increased.

H 62 - Maximum DC breaking capacity 62.31.9.xxx. 4800

H 62 - Maximum DC breaking capacity 62.32.9.xxx. 4800

- When switching a resistive load (DC1), or a DC13 load with a diode in parallel to the load, having voltage and current values under the DC1 curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected. Note: the release time for the load will be increased.
- When switching a DC13 load without a diode in parallel to the load, the DC13 curve applies and an electrical life of $\geq 80 \cdot 10^{3}$ can be expected.

AC version data

Nominal voltage U_{N} V	Coil code	Operating range		Resistance R	Rated coil consumption I at $\mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz})$
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
		V	V	Ω	mA
6	8.006	4.8	6.6	4.6	367
12	8.012	9.6	13.2	19	183
24	8.024	19.2	26.4	74	90
48	8.048	38.4	52.8	290	47
60	8.060	48	66	450	37
110	8.110	88	121	1,600	20
120	8.120	96	132	1,940	18.6
230	8.230	184	253	7,250	10.5
240	8.240	192	264	8,500	9.2
400	8.400	320	440	19,800	6

AC (NO/nPST-NO) version data $-\geq 3 \mathrm{~mm}$

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at $\mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz})$
		$U_{\text {min }}$	$U_{\text {max }}$		
V		V	V	Ω	mA
6	8.006	5.1	6.6	4	540
12	8.012	10.2	13.2	14	275
24	8.024	20.4	26.4	62	130
48	8.048	40.8	52.8	220	70
60	8.060	51	66	348	55
110	8.110	93.5	121	1,200	30
120	8.120	106	137	1,350	24
230	8.230	196	253	5,000	14
240	8.240	204	264	6,300	12.5
400	8.400	340	440	14,700	7.8

DC (NO/nPST-NO) magnetic blow version - > 2.1 mm or $\boldsymbol{>} \mathbf{4 . 2 \mathrm { mm }}$

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumptio I at U_{N}
		$U_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
V		V	V	Ω	mA
6	9.006	5.1	6.6	28	214
12	9.012	10.2	13.2	110	109
24	9.024	20.4	26.4	445	54
48	9.048	40.8	52.8	1,770	27
60	9.060	51	66	2,760	21.7
110	9.110	93.5	121	9,420	11.7
125	9.125	106	138	12,000	10.4
220	9.220	154*	242	37,300	5.8

[^7]
Coil specifications

R 62 - DC coil operating range v ambient temperature
Changeover contacts

1-Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

R 62 - DC coil operating range v ambient temperature
Normally open contacts

1-Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

R 62 - AC coil operating range v ambient temperature Changeover contacts

1-Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

R 62 - AC coil operating range v ambient temperature
Normally open contacts

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

R 62 - DC coil operating range v ambient temperature
Normally open contacts - magnetic blow version

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Outline drawings

Type 62.31-4800

Type 62.32-4800

-4.75

Accessories

062.10

062.10 with relay

062.60

062.60 with relay

062.05 with relay

062.07 with relay

Mounting adaptor for types $62.3 x$ and $62.8 x . x x x x . x x x 9$ (M4)
062.10

Flange mounting adaptor for types 62.3 x and $62.8 \mathrm{x} . \mathrm{xxxx} . \mathrm{xxx} 9$
062.10 with relay

062.60
062.10

062.60

062.60 with relay
062.05

Top flange mount for types $62.3 x$ and $62.8 x . x x x x . x x x 9$ -

062.05 with relay
062.07

Top 35 mm rail (EN 60715) mount for types 62.3 x and $62.8 \mathrm{x} . \mathrm{xxxx} . \mathrm{xxx9}$

062.08 with relay

Sheet of marker tags for 62 series relays, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$
060.72

92 Series - Sockets and accessories for 62 series relays

Approvals (according to type):

C \in © EHC © (4) ${ }^{(9)} \mathrm{A}_{\mathrm{us}}^{\circ}$

Screw terminal (Box clamp) socket
panel or 35 mm rail (EN 60715) moun
For relay type
Accessories

Metal retaining clip (supplied with socket - packaging code SMA)	092.71
Identification tag	092.00.2
Modules (see table below)	99.02
Timer modules (see table below)	86.00, 86.30
Technical data	
Rated values	16 A - 250 V
Dielectric strength	$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
Protection category	IP 20
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$ (see diagram L92)
(42) Screw torque Nm	0.8
Wire strip length mm	10
Max. wire size for 92.03 socket	solid wire ${ }^{\text {a }}$ (stranded wire
mm^{2}	$1 \times 10 / 2 \times 4 \times 1 \times 6 / 2 \times 4$
AWG	$1 \times 8 / 2 \times 12 \times 1 \times 10 / 2 \times 12$

L 92 - Rated current vs ambient temperature

92.03

Blue
62.31, 62.32, 62.33
92.03.0 Black

86 series timer modules
 Multi-voltage: (12...240)V AC/DC;

Multi-functions: AI, DI, SW, BE, CE, DE, EE, FE; (0.05s...100h)
(12...24)V AC/DC; Bi-function: Al, DI; (0.05s...100h)
86.00.0.240.0000
(110...125)V AC; Bi-function: AI, DI; (0.05s...100h)
86.30.0.024.0000
86.30.8.120.0000
86.30.8.240.0000
(230...240)V AC; Bi-function: AI, DI; (0.05s...100h)

Approvals (according to type):
 C $\in \operatorname{EH}\left[\mathrm{PG}_{c} \boldsymbol{N}_{\text {Us }}\right.$

99.02 coil indication and EMC suppression modules for 92.03 socket

Diode (+A1, standard polarity)	(6...220)V DC	99.02.3.000.00
LED	(6...24)V DC/AC	99.02.0.024.59
LED	(28...60)V DC/AC	99.02.0.060.59
LED	(110...240)V DC/AC	99.02.0.230.59
LED + Diode (+A 1, standard polarity)	(6...24)V DC	99.02.9.024.99
LED + Diode (+A 1, standard polarity)	(28...60)V DC	99.02.9.060.99
LED + Diode (+A 1, standard polarity)	(110...220)V DC	99.02.9.220.99
LED + Varistor	(6...24)V DC/AC	99.02.0.024.98
LED + Varistor	(28...60)V DC/AC	99.02.0.060.98
LED + Varistor	(110...240)V DC/AC	99.02.0.230.98
RC circuit	(6...24)V DC/AC	99.02.0.024.09
RC circuit	(28...60)V DC/AC	99.02.0.060.09
RC circuit	(110...240)V DC/AC	99.02.0.230.09
Residual current by-pass	(110...240)V AC	99.02.8.230.07

92.13

Approvals
(according to type):
(CHI CH (C)
c) ${ }^{\circ} \mathrm{L}$ ©

Approvals (according to type):
C \in © lHC ©
(H) ${ }^{(0)}{ }^{\circ}$

Packaging code

How to code and identify retaining clip and packaging options for sockets.
Example:

Features

30 A Power relays 1 NO (SPST-NO)
 65.31-0300 Flange mount Faston 250 connections 65.61-0300 PCB mount

- $\geq 3 \mathrm{~mm}$ contact gap
- AC coils \& DC coils
- Cadmium Free option available

* Distance between contacts $\geq 3 \mathrm{~mm}$ (EN 60335-1).
** With the AgSnO_{2} material the maximum peak current is $120 \mathrm{~A}-5 \mathrm{~ms}$ on NO contact.
For UL ratings see:
"General technical information" page V

Contact specification

Contact configuration

65.31-0300

- 30 A rated contacts
- Flange mount/Faston 250
$(6.3 \times 0.8 \mathrm{~mm})$ connection
65.61-0300

- 30 A rated contacts - PCB mount bifurcated terminals

$$
\begin{gathered}
11-0-14 \\
{ }_{\text {A1 }}-{ }_{\text {A2 }}
\end{gathered}
$$

Copper side view

Ordering information

Example: 65 series power relay, PCB with bifurcated terminals, $1 \mathrm{NO}+1 \mathrm{NC}($ SPST-NO + SPST-NC) contact, 12 V DC coil.

Selecting features and options: only combinations in the same row are possible. Preferred selections for best availability are shown in bold.

Type	Coil version	A	B	C	D
65.31	AC-DC	$\mathbf{0 - 4}$	$\mathbf{0}-3$	$\mathbf{0}$	$\mathbf{0}-9$
65.61	AC-DC	$\mathbf{0 - 4}$	$\mathbf{0}-3$	$\mathbf{0}$	$\mathbf{0}$

Technical data

Insulation according to EN 61810-1				
	$1 \mathrm{NO}+1 \mathrm{NC}$		1 NO	
Nominal voltage supply system V AC	230/400		230/400	
Rated insulation voltage V AC	250	400	250	400
Pollution degree	3	2	3	2
Insulation between coil and contact set				
Type of insulation	Basic		Basic	
Overvoltage category	III		III	
Rated impulse voltage kV (1.2/50 μ s)	4		4	
Dielectric strength V AC	2,500		2,500	
Insulation between open contacts				
Type of disconnection	Micro-disconnec		Full-dis	
Overvoltage category	-		III	
Rated impulse voltage kV (1.2/50 s$)$	-		4	
Dielectric strength V AC/kV (1.2/50 $\mu \mathrm{s}$)	1,500/2		2,500	
Conducted disturbance immunity				
Burst ($5 \ldots . .50$)ns, 5 kHz , on Al - A2	EN 61000-4-4		level 4 (4 kV)	
Surge (1.2/50 $\mu \mathrm{s}$) on A1 - A2 (differential mode)	EN 61000-4-5		level 4 (4 kV)	
Other data				
Bounce time: NO/NC ms	$5 / 6$ (1 normally open +1 normally closed)		7/- (normally open)	
Vibration resistance (10...150) Hz: NO/NC g	20/13			
Shock resistance g	20			
Power lost to the environment without contact current W	1.3			
with rated current W	2.1 (65.31, 65.61)		3.1 (65.31/.61.0300)	
Recommended distance between relays mounted on PCB mm	≥ 5			

Contact specification

F 65 - Electrical life (AC) v contact current

H 65 - Maximum DC1 breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 80 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

AC coil data

| $\begin{array}{c}\text { Nominal } \\ \text { voltage } \\ U_{N}\end{array}$ | $\begin{array}{c}\text { Coil } \\ \text { code }\end{array}$ | | $\begin{array}{c}\text { Operating range }\end{array}$ | | Resistance |
| :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Rated coil

consumption\end{array}\right)\)

R 65 - AC coil operating range v ambient temperature

[^8]
Accessories

Top flange mount for types 65.31.xxxx.xxx9

065.05
065.05

Top 35 mm rail (EN 60715) mount for types 65.31.xxxx.xxx9

065.07

065.07 with relay

Rear 35 mm rail (EN 60715) mount for types 65.31.xxxx.xxx9
065.08

065.08

065.08 with relay

For outline drawing see page 7
For Ul ratings see:
"General technical information" page V

Contact configuration

Rated voltage/Maximum switching voltage V AC

Rated load AC1
Rated load AC15 (230 V AC)

Single phase motor rating (230 VAC) kW

Features

2 Pole Changeover (DPDT) A Power relay

Faston 250 connections - Flange mount

66.22 PCB connections \& mount

- Reinforced insulation between coil and 8 mm creepage and clearance distances
- AC coils \& DC coils
- Cadmium Free option available
- ATEX compliant (EX nC) option available

66 Series - Power relays 30 A

Features

2 Pole NO (DPST-NO)
A 30 A Power relay
66.22-x300 PCB mount
66.82-x300 Faston 250 connections - Flange mount

- Reinforced insulation between coil and contacts according to EN 60335-1; 8 mm creepage and clearance distances
- AC coils \& DC coils
- Cadmium Free option available
- ATEX compliant (EX nC) option available

For outline drawing see page 7
For Ul ratings see:
"General technical information" page V

Contact specification

Contact configuration

Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC

Rated load AC1
Rated load AC15 (230 V AC) VA
Single phase motor rating (230 V AC) kW
Breaking capacity DC1:30/110/220 V A

Minimum switching load	mW
Standard contact material	

Coil specification

Nominal voltage (U_{N})	6-12-24-110/115-120/125-230-240		
	6-12-24-110-125		
Rated power AC/DC VA (50 Hz)/W	3.6/1.7	3.6/1.7	
Operating range	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$	
	$(0.8 \ldots 1.1) U_{N}$	(0.8...1.1) U_{N}	
Holding voltage AC/DC	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	
Must drop-out voltage AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	
Technical data			
Mechanical life AC/DC cycles	$10 \cdot 10^{6}$	$10 \cdot 10^{6}$	
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$	
Operate/release time ms	8/10	8/10	
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV	$6(8 \mathrm{~mm})$	6 (8 mm)	
Dielectric strength between open contacts V AC	1,500	1,500	
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	$-40 \ldots+70$	
Environmental protection	RT II	RT II	
Approvals (according to type)			

66 Series - Power relays 30 A
SERIES

Ordering information

Example: 66 series relay, Faston $250(6.3 \times 0.8 \mathrm{~mm})$ with top flange mount, 2 CO (DPDT) 30 A contacts, 24 V DC coil.

Selecting features and options: only combinations in the same row are possible.
Preferred selections for best availability are shown in bold.

Type	Coil version	A	B	C	D
66.22	AC-DC	$\mathbf{0}-1$	$\mathbf{0}-3$	$\mathbf{0}$	$0-\mathbf{1}$
	DC	$\mathbf{0}-1$	$\mathbf{6}$	$\mathbf{0}$	$0-\mathbf{1}$
	DC	$\mathbf{0}-1$	$\mathbf{6}$	$\mathbf{0}$	$0-\mathbf{1}-3$
66.82	AC-DC	$\mathbf{0}-1$	$\mathbf{0}-3$	$\mathbf{0}$	$\mathbf{0}-1-3$
	DC	$\mathbf{0}-1$	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{0}-1-3$

Technical data

Insulation according to EN 61810-1		
Nominal voltage of supply system V AC	230/400	
Rated insulation voltage V AC	400	
Pollution degree	3	
Insulation between coil and contact set		
Type of insulation	Reinforced (8 mm)	
Overvoltage category	III	
Rated impulse voltage kV (1.2/50 $\mu \mathrm{s}$)	6	
Dielectric strength V AC	4,000	
Insulation between adjacent contacts		
Type of insulation	Basic	
Overvoltage category	III	
Rated impulse voltage kV (1.2/50 μ)	4	
Dielectric strength V AC	2,500	
Insulation between open contacts	2 CO	$2 \mathrm{NO}, \geq 1.5 \mathrm{~mm}$ (x60x version)
Type of disconnection	Micro-disconnection	Full-disconnection *
Overvoltage category	-	1
Rated impulse voltage kV (1.2/50 $\mu \mathrm{s}$)	-	2.5
Dielectric strength V AC/kV (1.2/50 μ)	1,500/2	2,500/3
Conducted disturbance immunity		
Burst ($5 \ldots . .50$)ns, 5 kHz , on A1-A2	EN 61000-4-4	level 4 (4 kV)
Surge (1.2/50 $\mu \mathrm{s}$) on A1-A2 (differential mode)	EN 61000-4-5	level 4 (4 kV)
Other data		
Bounce time: NO/NC ms	7/10	
Vibration resistance (10...150)Hz: NO/NC g	20/19	
Shock resistance g	20	
Power lost to the environment without contact current W	2.3	
with rated current W	5	
Recommended distance between relays mounted on PCB mm	≥ 10	

* Only in applications where over voltage category II is permitted. In applications of over voltage category III: Micro-disconnection.

Contact specification

F 66 - Electrical life (AC) v contact current
250 V (normally open contact)

H 66 - Maximum DC breaking capacity

F 66 - Electrical life (AC) v contact current
440 V (normally open contact)

H 66 - Maximum DC breaking capacity, $\times 60 x$ versions ($>1.5 \mathrm{~mm}$ contact gap)

- When switching a resistive load (DC 1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications

DC coil data

Nominal voltage U_{N}	Coil code	Operating range		Resistance	Rated coil
		$U_{\min }$	$\mathrm{U}_{\text {max }}$	R	I at U_{N}
V		V	V	Ω	mA
6	9.006	4.8	6.6	21	283
12	9.012	9.6	13.2	85	141
24	9.024	19.2	26.4	340	70.5
110	9.110	88	121	7,000	15.7
125	9.125	100	138	9,200	13.6

R 66 - DC coil operating range v ambient temperature

I-Max. permitted coil voltage.
2-Min. pick-up voltage with coil at ambient temperature.
$\stackrel{y}{>}$ - Min. pick-up voltage with coil at ambient temperature ($66.22-\times 60 \times \mathrm{S}$).

AC coil data

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at $\mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz})$
		$\mathrm{U}_{\text {min }}$	$U_{\text {max }}$		
V		V	V	Ω	mA
6	8.006	4.8	6.6	3	600
12	8.012	9.6	13.2	11	300
24	8.024	19.2	26.4	50	150
110/115	8.110	88	126	930	32.6
120/125	8.120	96	137	1,050	30
230	8.230	184	253	4,000	15.7
240	8.240	192	264	5,500	15

R 66-AC coil operating range v ambient temperature

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

66 Series - Power relays 30 A

Features compliant variant ATEX, II 3G Ex nC IIC Gc

MARKING	
\&x Specific marking of explosion protection	
II Component for surface plant (different from mines)	
3 Category 3: normal level of protection	
$\underset{0}{\sim}$	G Explosive atmosphere due to presence of combustible gas vapour or mist
	Ex nC Sealed device (type of protection for category 3G)
	IIC Gas group
	Gc Equipment Protection Level
$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq+70^{\circ} \mathrm{C}$ Ambient temperature	
EUT EUT: 14: 0150 U: AT	4 ATEX 0150 U aboratory which issues the CE type certificate ar of issue of certificate number of CE type certificate EX component

Electrical characteristics

Characteristics of terminals

Rated current/Maximum peak current	A	25/50 (NO) - 10/20 (NC)
Rated voltage/Maximum switching voltage	V AC	250/400
Rated load AC1	VA	6,250 (NO) - 2,500 (NC)
Rated load AC15	VA	1,200 (NO)
Capacity for single phase motor (230 V AC)	kW	1.5 (NO)
Breaking capacity DC1: 30/110/220 V	A	25/0.7/0.3 (NO)
Characteristics of coil		
Rated voltage (U_{N})	V AC ($50 / 60 \mathrm{~Hz}$)	6-12-24-110/115-120/125-230-240
	V DC	6-12-24-110-125
Rated Power AC/DC	VA (50 Hz)/W	3.6/1.7
Operating range	AC/DC	$(0.8 \ldots 1.1) U_{N}$
General characteristics		
Ambient temperature	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$

Special condition for safe use

The component must be placed inside an enclosure that meets the general requirements for enclosures as per clause 6.3 of EN $60079-15$.
The connections must be made in compliance with the requirements of clause 7.2.4 or 7.2.5 of EN 60079-15.

Wiring

The cross-section of conductors connected to the terminals, must be at least $4 \mathrm{~mm}^{2}$ for the Type 66.82 .

Layout pcb

The minimum cross-section of the tracks of the printed circuit board must be $0.58 \mathrm{~mm}^{2}$, while the width must be at least 4 mm for Types " 66.22 " and " $66.22 \ldots . S^{\prime}$ ".

Outline drawings

Type 66.22

Type 66.22-0300

Type 66.22-0600

Type 66.82

Type 66.82-0300

Type 66.82-0600

Type 66.22-0600S

Accessories

066.07

066.07 with relay

Features

Printed circuit mount - 3 mm contact gap 50 A Power relay for photovoltaic inverters

- 2 and 3 pole versions
(NO, double break contacts)
- Contact gap $\geq 3 \mathrm{~mm}$ (according to VDE 0126-1-1, EN 62109-1, EN 62109-2)
- DC coils, with only 170 mW holding power
- Reinforced insulation between coil and contacts
- 1.5 mm gap between PCB and relay base
- Suitable for use at ambient temperatures up to $85{ }^{\circ} \mathrm{C}$ (with energy-saving coil energization) or $70^{\circ} \mathrm{C}$ (with standard coil energization)
- Meets the EN 60335-1 requirements of resistance to heat and fire (GWIT $775^{\circ} \mathrm{C}$ and GWFI $850^{\circ} \mathrm{C}$)

- $2 \mathrm{NO} \quad$ - 3 NO
- Contact gap $\geq 3 \mathrm{~mm} \quad$ - Contact gap $\geq 3 \mathrm{~mm}$ - PCB mount
- PCB mount
67.23-4300

Features

Printed circuit mount - 5.2 mm contact gap

 50 A Power relay for photovoltaic inverters- 2 and 3 pole versions (NO double break contacts)
- Contact gap $\geq 5.2 \mathrm{~mm}$ (according to VDE 0126-1-1, EN 62109-1, EN 62109-2)
- Suitable for inverters with DC input up to $1,500 \mathrm{~V}$ and AC output up to 690 V , installations up to $4,000 \mathrm{~m}$ above sea level
- DC coils, with only 170 mW holding power
- Reinforced insulation between coil and contacts
- 1.5 mm gap between PCB and relay base
- Suitable for use at ambient temperatures up to $85{ }^{\circ} \mathrm{C}$ (with energy-saving coil energization) or $60^{\circ} \mathrm{C}$ (with standard coil energization)
- Meets the EN 60335-1 requirements of resistance to heat and fire (GWIT $775^{\circ} \mathrm{C}$ and GWFI $850^{\circ} \mathrm{C}$)
67.22-4500

- 2 NO
- Contact gap $\geq 5.2 \mathrm{~mm}$ - PCB mount
67.23-4500

- 3 NO
- Contact gap $\geq 5.2 \mathrm{~mm}$ - PCB mount

Ordering information

Example: 67 series solar relay, single $P C B$ terminals, 2 pole $\mathrm{NO}, \geq 3 \mathrm{~mm}$ contact gap .

Technical data

Insulation according to EN 61810-1			
Nominal voltage of supply system V AC	400/690 3-phase	400 1-phase	230/400
Rated insulation voltage V AC	630	400	400
Pollution degree	3		
Insulation between coil and contact set			
Type of Insulation	Reinforced		
Overvoltage category	III		
Rated impulse voltage kV (1.2/50 $\mu \mathrm{s}$)	6		
Dielectric strength V AC	4,000		
Insulation between adjacent contacts			
Type of Insulation	Basic		
Overvoltage category	III		
Rated impulse voltage kV (1.2/50) $\mathrm{ps}^{\text {s }}$	6		
Dielectric strength V AC	2,500		
Insulation between open contacts			
Type of disconnection	Micro-disconnection *		Full-disconnection
Overvoltage category	-		III
Rated impulse voltage kV (1.2/50) $\mu \mathrm{s}$	-		4
Dielectric strength V AC	2,500 (67.xx-4300) / 3,000 (67.xx-4500)		
Conducted disturbance immunity			
Burst (5...50)ns, 5 kHz , on A 1 - A2	EN 61000-4-4		level 4 (4 kV)
Surge (1.2/50 $\mu \mathrm{s}$) on A1 - A2 (differential mode)	EN 61000-4-5		level 4 (4 kV)
Other data			
Bounce time: NO ms	2		
Vibration resistance (10...150) Hz: NO g	15		
Shock resistance g	35		
Power lost to the environment without contact current W	1.7 (67.xx-4300) / 2.7 (67.xx-4500)		
with rated current W	8.5 (67.xx-4300) / 9.5 (67.xx-4500)		
Recommended distance between relays mounted on PCB mm	≥ 20		

[^9]
Contact specification

F 67 - Electrical life vs contact current (AC1/AC7a load)

H 67 - Maximum DC breaking capacity ($67 . \mathrm{xx}-4300$)

When switching a resistive (DC 1) or inductive (DC 13) load having voltage and current values under the corresponding curve, an electrical life of >30000 cycles can be expected.

H 67 - Maximum DC breaking capacity (67.xx-4500)

When switching a resistive (DC1) or inductive (DC13) load having voltage and current values under the corresponding curve, an electrical life of >30000 cycles can be expected.

Coil specifications

DC coil data, 67.xx-4300

Nominal voltage U_{N}	Coil code	Operating range (@ $70{ }^{\circ} \mathrm{C}$ max)		Holding voltage U_{h}	Resistance	Rated coil consumption I at U_{N} I_{N}
V		V	V	V	Ω	mA
5	9.005	4.5	5.5	1.6	14.7	340
6	9.006	5.4	6.6	1.9	21.5	279
8	9.008	7.2	8.8	2.6	37.6	213
12	9.012	10.8	13.2	3.8	85	141
24	9.024	21.6	26.4	7.7	340	71
48	9.048	43.2	52.8	15.4	1,355	35
60	9.060	54	66	19.2	2,120	28
110	9.110	99	121	35.2	7,120	15

DC coil data, 67.xx-4500

Nominal voltage U_{N}	Coil code	Operating range (@ $60^{\circ} \mathrm{C}$ max)		Holding voltage U_{h}	Resistance	Rated coil consumption I at U_{N} I_{N}
V		V	V	V	Ω	mA
5	9.005	4.5	5.5	1.25	9.3	538
6	9.006	5.4	6.6	1.5	13.5	444
8	9.008	7.2	8.8	2	23.7	338
12	9.012	10.8	13.2	3	53.5	224
24	9.024	21.6	26.4	6	213	113
48	9.048	43.2	52.8	12	855	56
60	9.060	54	66	15	1,335	45
110	9.110	99	121	27.5	4,500	24

R 67 - Operating range v ambient temperature, $67 . x x-4300$ with standard (continuous) coil energization $(-40 \ldots+70)^{\circ} \mathrm{C}$

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Energy saving mode

In some applications, such as photovoltaic inverters, it may be necessary to minimize the overall relay power dissipation and to permit use at higher ambient temperature levels (up to $85^{\circ} \mathrm{C}$). This can be achieved by initially applying a coil voltage within the Energy saving mode Operating range (see diagram to the right) and then rapidly (<1 s) reducing the coil voltage to a level within the Holding voltage range. The lower the Holding voltage, the lower is the continuous power dissipation of the coil (0.17 W minimum).
Coil voltages as high as $2.5 \mathrm{U}_{\mathrm{N}}$ may be used, when necessary, to reduce the contact operate time.

R 67 - Operating range \mathbf{v} ambient temperature, 67.xx-4500 with standard (continuous) coil energization $(-40 \ldots+60)^{\circ} \mathrm{C}$

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

R 67-Operating range vambient temperature, 67.xx-4300/4500
in energy saving mode $(-40 \ldots+85)^{\circ} \mathrm{C}$

1-Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Outline drawings
Type 67.22
A

Type 67.23

SERIES

Ordering information

Example: RB series, bistable relay, $4 \mathrm{CO}, 125 \mathrm{~V}$ DC coil, 35 mm rail (EN 60715) mount.

No. of poles
4 = 4 CO
Coil version
$9=D C$
Coil voltage

Codes / supply voltages

$024=24 \mathrm{~V} D C$
RB.14.9.024.0000
RB.14.9.048.0000
$125=110 \ldots 125 \mathrm{~V} D C$
RB.14.9.125.0000
$250=220 \ldots 250 \mathrm{~V} D C$
RB.14.9.250.0000

Example: RB series, bistable relay, $2 \mathrm{CO}, 125 \mathrm{~V}$ DC coil, 11 pin socket type 90.21 mount.

Technical data

Insulation according to EN 61810-1

Nominal voltage of supply system	2 CO	4 CO	
Rated insulation voltage	$230 / 400$		$230 / 400$
Pollution degree		250	250

Insulation between coil and contact set

Type of insulation	Reinforced $(8 \mathrm{~mm})$	Reinforced $(8 \mathrm{~mm})$
Overvoltage category	III	III
Rated impulse voltage	$\mathrm{kV} 1.2 / 50 \mathrm{\mu s})$	4
Dielectric strength	2,000	6

Insulation between adjacent contacts

Type of insulation	Basic	Basic	
Overvoltage category	III	III	
Rated impulse voltage	$\mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$	4	4
Dielectric strength	V ACC	2,000	2,500

Insulation between open contacts

Type of disconnection	Micro-disconnection	Micro-disconnection
Dielectric strength V AC/kV (1.2/50 $\mu \mathrm{s}$)	1,000/1.5	1,000/1.5
Conducted disturbance immunity		
Burst (5...50)ns, 5 kHz , on A 1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 s) on A1-A2 (differential mode)	EN 61000-4-5	level $3(2 \mathrm{kV}$)
Other data		
Bounce time: SET (NO) / RESET (NC) ms	$3 / 6$	
Vibration resistance (5..55) Hz: NO/NC g	3/6	
Shock resistance g	15	
Max cable lenght for push-button connection m	100	
Terminals	Screw terminal	
	Solid and stranded cable	
Max. wire size mm^{2}	$1 \times 2.5 / 2 \times 1.5$	
AWG	$1 \times 14 / 2 \times 16$	

Contact specification

RB - Maximum DC1 breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load.
Note: the release time for the load will be increased.

Coil specifications - Type RB. 14

DC coil data

Nominal voltage U_{N}	Coil code	Operating range		Rated coil consumption	Rated power
V	$U_{\text {min }}$	$U_{\text {max }}$	I_{N}		
24	9.024	19.2	26.4	290	7
48	9.048	38.4	52.8	150	7
$110 \ldots 125$	9.125	88	137.5	60	7
$220 \ldots 250$	9.250	176	275	30	7

Coil specifications - Type RB. 22
DC coil data

Nominal voltage U_{N}	Coil code	Operating range		Rated coil consumption I a U_{N}	Rated power
V		V	V	mA	W
24	9.024	19.2	26.4	170	4
110... 125	9.125	88	137.5	35	4
220... 250	9.250	176	275	18	4

Wiring diagrams

Type RB. 14
Connection for only local push-buttons enable
EN = Enable - Positive voltage
OV = Negative voltage

Type RB. 22
Connection for only local push-buttons enable
EN = Enable - Positive voltage
$O V=$ Negative voltage

Type RB. 14
Connetion for remote push-buttons enable

Type RB. 22
Connetion for remote push-buttons enable

(Re
Reset)
R
\square
\square

Type RB. 14
Connetion for local and remote push-buttons enable

Type RB. 22
Connetion for local and remote push-buttons enable

Functions

Outline drawings

RB. 14
Screw terminal

RB. 22
Screw terminal

Ordering information

Example: RR series, fast relay module, $4 \mathrm{CO}, 125 \mathrm{~V}$ DC coil, 35 mm rail (EN 60715) mount.

Example: RR series, fast relay module, $3 \mathrm{NO}+1 \mathrm{CO}, 125 \mathrm{~V}$ DC coil, 11 pin socket type 90.21 mount.

Technical data

Insulation according to EN 61810-1	RR. 14	RR. 24
	4 CO	$3 \mathrm{NO}+1 \mathrm{CO}$
Nominal voltage of supply system V AC	230/400	230/400
Rated insulation voltage V AC	250	250
Pollution degree	2	2
Insulation between coil and contact set		
Type of insulation	Reinforced (8 mm)	Reinforced (8 mm)
Overvoltage category	III	III
Rated impulse voltage \quad kV (1.2/50 ss)	6	4
Dielectric strength V AC	3,500	2,000
Insulation between adjacent contacts		
Type of insulation	Basic	Basic
Overvoltage category	II	II
Rated impulse voltage \quad kV (1.2/50 ss)	2.5	2.5
Dielectric strength V AC	2,000	2,000
Insulation between open contacts		
Type of disconnection	Micro-disconnection	Micro-disconnection
Dielectric strength V AC/kV (1.2/50 ss)	1,000/1.5	1,000/1.5
Conducted disturbance immunity		
Burst ($5 \ldots .50$)ns, 5 kHz , on A1-A2	EN 61000-4-4	level 3 (2 kV)
Surge (1.2/50 $\mathrm{\mu s}$) on A1 - A2 (differential mode)	EN 61000-4-5	level 3 (2 kV)
Other data		
Bounce time: NO/NC ms	1.3/5.1	
Vibration resistance (5...55) Hz: NO/NC g	15/3	
Shock resistance g	13	
Terminals	Screw terminal	
	Solid and stranded cable	
Max. wire size mm^{2}	$1 \times 2.5 / 2 \times 1.5$	
AWG	$1 \times 14 / 2 \times 16$	

Contact specification

RR - Electrical life (AC) v contact current

RR - Maximum DC1 breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications - Type RR. 14
DC coil data

Nominal voltage U_{N}	Coil code	Opera $U_{\text {min }}$	range $U_{\max }$	Operate time	Release time	Rated power	Rated coil consumption I at U_{N}
\checkmark		V	V	V	V	W	mA
24	9.024	19.2	26.4	15	2.8	2.4	100
48	9.048	38.4	52.8	30	3	3.8	79
110... 125	9.125	88	137.5	80	12	3.7	29
220	9.220	176	242	150	20	3.9	18
250	9.250	200	275	160	22	3.8	15

Coil specifications - Type RR. 24

DC coil data

Nominal voltage U_{N}	Coil code	Operating range		Operate time	Release time	Rated power	Rated coil consumption I at U_{N}
\vee		min	$\mathrm{U}_{\text {max }}$	V	V	V	W
24	9.024	19.2	26.4	14	2.4	2.3	95
$110 \ldots 125$	9.125	88	137.5	80	12	3.7	29
$220 \ldots 250$	9.250	176	275	150	20	3.9	18

Outline drawings

RR. 14
Screw termina

Voltage-current characteristic when switching a resistive load (fig. 1).

Switching Relay Coils.

When switching a resistive load, the current follows the phase of the voltage directly (Fig 1).

When switching relay coils the current and voltage waveforms are different due to the inductive nature of the coil (Fig 2). A brief explanation of this mechanism is as follows.

On energisating the coil, the build up of the magnetic field gives rise to counter electromotive forces which in turn delay the rise in coil current. On de-energisation, the sudden interruption of the coil current causes a sudden collapse of the magnetic field, which in turn induces a high voltage of reverse polarity across the coil. This reverse polarity voltage peak can reach a value typically 15 times higher than the supply voltage, and as a consequence can disturb or destroy electronic devices.

To counteract this potentially damaging effect, relays coils can be suppressed with a Diode, a Varistor (voltage dependent resistor) or a RC (resistor/capacitor) module - dependent on the operating voltage. (See below for descriptions of the various Modules available.)

Whilst the above description is based on the working of a DC coil, the reverse polarity voltage peak on de-energisation applies similarly to AC coils. However, when energising AC coils there will also be a coil inrush current of 1.3 to 1.7 times the nominal coil current - dependent on coil size. If coils are fed via a transformer (and particularly if several are energised at the same time) then this may need to taken into account when calculating the VA rating of the transformer.

Diagrams
99.01.9.xxx.99 only
$99.80 .9 . \mathrm{xxx.99}$ only
Functions
Green LED + diode module (standard polarity)
Recovery diode modules + LED are used for DC only. The reverse voltage peaks of
the coil are short circuited by the recovery diode (positive to terminal A1).
The release time increases by an approximate factor of 3.
If ancrease of the release time is undesirable use a Varistor or RC module.
The LED indicator lights up when the coil is energized.

Green LED + Varistor module

LED modules + Varistor are used for both AC and DC coils.
The reverse voltage peaks of the relay coil are limited by the Varistor to approximately 2.5 times the nominal voltage of the supply. When using DC coils it is essential that positive is connected to terminal A1. The relay release time increases insignificantly.

Green LED module

LED modules are used for AC and DC.
The LED indicator lights up when the coil is energized.
When using DC it is essential that positive is connected to terminal A .

RC module

RC circuit modules are used for $A C$ and DC coils. The reverse voltage peaks of the coil are limited by the RC module to approximately 2.5 times the nominal voltage of the supply. The relay release time increases insignificantly.

Residual current bypass module

Bypass modules are advisable if 110 or $230 v$ AC relays show any tendency to fail to release. Failure to release can be caused by residual currents from AC proximity switches or inductive coupling caused through long parallel lying AC control lines.

Features

1 Pole - 6 A electromechanical relay interface modules, 6.2 mm wide.

Ideal interface for PLC and electronic systems

- Sensitive DC coil or AC/DC coil versions
- Integral coil indication and protection circuit
- Instant ejection of relay using plastic retaining clip
- UL Listing (certain relay/socket combinations)
- 35 mm rail (EN 60715) mounting

38.61 / 38.61.3 Screwless terminal

38.51 .3 / 38.61.3
- 1 pole electromechanical relay
- Screw terminal and screwless terminal
- 35 mm rail (EN 60715) mounting

- Leakage current suppression
- 1 pole electromechanical relay
- Screw terminal and screwless terminal - 35 mm rail (EN 60715) mounting

* Special version for max ambient temperature $+70^{\circ} \mathrm{C}$. For outline drawing see page 12

Contact specification

Contact configuration

Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC

Rated load AC 1 VA

Rated load AC 15 (230 V AC) VA

Single phase motor rating (230 V AC)	kW
Breaking capacity DC1:30/110/220 V	A

Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact
Coil specification
Nominal voltage (U_{N})

Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV
Dielectric strength between open contacts V AC
Ambient temperature range $\left(\mathrm{U}_{\mathrm{N}} \leq 60 \mathrm{~V} />60 \mathrm{~V}\right){ }^{\circ} \mathrm{C}$
Protection category
Approvals relay (according to type)

(ere $+70^{\circ} \mathrm{C}$.			
	1 CO (SPDT)		
A	6/10		
age V AC	250/400		
VA	1,500		
VA	300		
) kW	0.185		
20 V A	6/0.2/0.12		
W (V/mA)	500 (12/10)		
	AgNi		
V AC/DC	12-24-48-60-(110...125)-(220...240)	(110...125)	-

$(110 \ldots 125)$	-
-	$(230 \ldots 240)$

6-12-24-48-60 (non polarized)

Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	$\mathrm{AC} / \mathrm{DC}$
	AC
Holding voltage	$\mathrm{AC} / \mathrm{DC}$
Must drop-out voltage	$\mathrm{AC} / \mathrm{DC}$
Technical data	
Mechanical life AC/DC	cycles
Electrical life at rated load ACl	cycles
Operate/release time	ms
Insulation between coil and contacts $(1.2 / 50 ~ \mu s) ~ k V$	
Dielectric strength between open contacts V AC	
Ambient temperature range ($\left.\mathrm{U}_{\mathrm{N}} \leq 60 \mathrm{~V} />60 \mathrm{~V}\right){ }^{\circ} \mathrm{C}$	
Protection category	
Approvals relay (according to type)	

Features

Single output - solid state relay interface modules, 6.2 mm wide.

Ideal interface for PLC and electronic systems

- DC, AC or AC/DC input versions
- Supplied with integral coil indication and protection circuit
B. . Silent, high switching speed and long electrical life
- Instant ejection of relay using plastic retaining clip
- UL Listing (certain relay/socket combinations)
- 35 mm rail (EN 60715) mounting

$38.81 / 38.81 .3$ 38.91/38.91.3	. 35 mm rail (EN 60715) mounting			- Screw terminal and screwless terminal . 35 mm rail (EN 60715) mounting		
Screw terminal Screwless terminal For outline drawing see page 12	$34.81 \text { with }$ AC SSR output			34.81 with AC SSR output		
Output specification						
Contact configuration	1 NO (SPST-NO)			$1 \mathrm{NO}($ SPST-NO)		
Rated current/Maximum peak current (10 ms) A	2/20	0.1/0.5	2/40	2/20	0.1/0.5	2/40
Rated voltage/Maximum blocking voltage V	24/33 DC	48/60 DC	240/- AC	24/33 DC	48/60 DC	240/-AC
Switching voltage range V	(1.5...24)DC	(1.5...48)DC	(12...275)AC	(1.5...24)DC	(1.5...48)DC	(12...275)AC
Repetitive peak off-state voltage $\quad \mathrm{V}_{\mathrm{pk}}$	-	-	600	-	-	600
Minimum switching current mA	1	0.05	22	1	0.05	22
Max. "OFF-state" leakage current mA	0.001	0.001	1.5	0.001	0.001	1.5
Max. "ON-state" voltage drop V	0.12	1	1.6	0.12	1	1.6
Input specification						
Nominal voltage (U_{N}) $\begin{array}{r}\text { V AC } \\ \\ \text { V AC/DC }\end{array}$	-			230... 240		
	6-24-60			-		
	(110...125) - (220...240)			110... 125		
Operating range V DC	See page 10			See page 10		
Control current mA	See page 10			See page 10		
Release voltage V DC	See page 10			See page 10		
Technical data						
Operate/release time: ON/OFF (DC input) ms	0.2/0.6	0.04/0.11	12/12	0.2/0.6	0.04/0.11	12/12
Dielectric strength between input/output V AC	2,500			2,500		
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-20 \ldots+55$			$-20 \ldots+55$		
Environmental protection	IP20			IP20		
Approvals relay (according to type)	CE (1) EH[PG (1) RINA c\% ${ }_{\text {US }}^{\text {U }}$					

Features

Slim timed interface module, 6.2 mm wide. 1 pole, 6 A - electromechanical relay 1 output, 2 A DC or AC - solid state relay

- Electromechanical or solid state output
- Multi-functions timer
- AC/DC supply
- 4 time scales from 0.1 s to 6 h
- Instant ejection of relay using plastic retaining clip
- 6.2 mm wide, 35 mm rail (EN 60715) mounting
38.21

Screw terminal

For outline drawing see page 12
Contact specification
Contact configuration

Rated current/Maximum peak current A	
Rated voltage/Maximum switching voltage V AC	
Rated load AC1	VA
Breaking capacity DC1: 30/110/220 V A	
Minimum switching load mW	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	
Output specification	
Output configuration	
Rated current/Maximum peak current	peak current A
Rated voltage/Maximum blocking voltage V	
Switching voltage range V	
Repetitive peak off-state voltage $\quad \mathrm{V}_{\mathrm{pk}}$	
Minimum switching current mA	
Max. "OFF-state" leakage current mA	
Max. "ON-state" voltage drop V	
Supply specification	
Nominal voltage (U_{N}) V AC (50/60Hz)/DC	
Rated power	VA/W
Operating range	AC
	DC

Technical data

Specified time range
II-2014, www.findernet.com
38.21

- 1 pole electromechanical output relay - 12 or $24 \mathrm{~V} \mathrm{AC/DC} \mathrm{supply}$
- Screw terminal
- 35 mm rail (EN 60715) mounting

1 CO (SPDT)
6/10
250/400
1,500
$6 / 0.2 / 0.12$
$500(12 / 10)$
AgNi

AgNi
-

A
\square

-
-
$-$
-
$-$
-
$-$
12-24

-	
DC output (...9024)	AC output (...8240)
1 NO (SPST-NO)	1 NO (SPST-NO)
$2 / 20$	$2 / 40$
$(24 / 33) D C$	$(240 /-) A C$
$(1.5 \ldots 24) D C$	$(12 \ldots 275) \mathrm{AC}$

- 24 V AC/DC supply voltage
- Screw terminal
- 35 mm rail (EN 60715) mounting

-

-
-

-

(240/-)AC
(12...275)AC

600
38.21...9024-8240

elays ting
-

-
-

22
1
.001
1.5
1.6

Features

Electromechanical relay interface modules, 14 mm wide.
38.01 and 38.11-1 Pole 16 A
38.52 and 38.62-2 Pole 8 A

Ideal interface for PLC and electronic systems

- Sensitive DC coil or AC/DC coil versions - Integral coil indication and protection circuit - Instant ejection of relay using plastic retaining clip
- UL Listing (certain relay/socket combinations) - 35 mm rail (EN 60715) mounting
38.01/52

Screw terminal

38.11/62 Screwless terminal

For outline drawing see page 12

Contact specification

Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC
Rated load AC1
Rated load AC15 (230 V AC)
Single phase motor rating (230 V AC)
Breaking capacity $\mathrm{DCl}: 30 / 110 / 220 \mathrm{~V} \quad \mathrm{~A}$
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material
Coil specification
Nominal voltage (U_{N})

	V AC
	V DC
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	$\mathrm{AC} / \mathrm{DC}$
Holding voltage	$\mathrm{AC} / \mathrm{DC}$
Must drop-out voltage	$\mathrm{AC} / \mathrm{DC}$

Technical data

Mechanical life AC/DC	cycles
Electrical life at rated load AC1	cycles

Operate/release time	ms
Insulation between coil and contacts $(1.2 / 50 \mu \mathrm{~s}) \mathrm{kV}$	

Dielectric strength between open contacts $V \mathrm{AC}$
Ambient temperature range $\left(\mathrm{U}_{\mathrm{N}} \leq 60 \mathrm{~V} />60 \mathrm{~V}\right){ }^{\circ} \mathrm{C}$
Protection category
Approvals relay (according to type)

38.01/38.11

- Screw terminal and screwless terminal - 1 pole electromechanical relay - 35 mm rail (EN 60715) mounting

38.52/38.62
- Screw terminal and screwless terminal - 2 pole electromechanical relay . 35 mm rail (EN 60715) mounting

* For currents $>10 \mathrm{~A}$, contact terminals must be connected in parallel (21 with 11, 24 with 14,22 with 12).
- A

A)
\square

1 CO (DPDT)
$16^{*} / 30$
$250 / 400$
4,000
750
0.5
$16 / 0.3 / 0.12$
$300(5 / 5)$
AgNi

AgNi
$24-60-(110 \ldots 125)-(220 \ldots 240)$

$-$

Features

Single output - solid state relay interface modules, 14 mm wide.

Ideal interface for PLC and electronic systems

- DC input versions
- Supplied with integral coil indication and protection circuit
- Silent, high switching speed and long electrical life
- Instant ejection of relay using plastic retaining clip
- UL Listing (certain relay/socket combinations) - 35 mm rail (EN 60715) mounting

For outline drawing see page 12
Output specification
Contact configuration
Rated current/Maximum peak current (10 ms)
Rated voltage/Maximum blocking voltage
Switching voltage range V

Repetitive peak off-state voltage $\quad \mathrm{V}_{\mathrm{pk}}$	-	600
Minimum switching current mA	1	50
Max. "OFF-state" leakage current mA	0.01	1
Max. "ON-state" voltage drop V	0.3	1.1
Input specification		
Nominal voltage (U_{N}) V AC/DC	24	
V DC	12-24	
Operating range V DC	See page 10	
Control current mA	See page 10	
Release voltage V DC	See page 10	
Technical data		
Operate/release time: ON/OFF (DC input) ms	0.05/0.25	12/12
Dielectric strength between input/output V AC	2,500	
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-20 \ldots+55$	
Environmental protection	IP20	
Approvals relay (according to type)	C (6) EH[PG (1) RINA crious	

Ordering information

Electromechanical relay - 1 or 2 Pole
Example: 38 series screw terminal relay interface module, 1 CO (SPDT), sensitive 12 V DC coil.

B

No. of poles
$1=1$ pole, 6 or 16 A
$2=2$ pole, 8 A
Coil version
$0=A C(50 / 60 \mathrm{~Hz}) / D C$
3 = Leakage current suppression for
(110...125)V AC/DC - (230...240)V AC
$7=$ Sensitive DC, $(6,12,24,48,60) V$ only
$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$

Coil voltage

See coil specifications

Selecting features and options: only combinations in the same row are possible.

Type	Coil version	A	B	C	D
$38.01 / 11$	7	$0-4$	0	5	0
$38.01 / 11$	$0-8$	$0-4$	0	6	0
$38.51 / 61$	7	$0-4-5$	0	5	0
$38.51 / 61$	$0-3-8$	$0-4-5$	0	6	0
$38.52 / 62$	7	$0-5$	0	5	0
$38.52 / 62$	$0-8$	$0-5$	0	6	0
38.21	0	0	0	6	0

Ordering information

Solid state relay - Single output-6.2 \& 14 mm wide
Example: 38 series screw terminal SSR relay interface module, 6.2 mm wide, 2 A output, 24 V DC input.

Type
21 = Timer SSR 6.2 mm wide, with screw terminal
31 = SSR 14 mm wide, with screw terminal
41 = SSR 14 mm wide, with screwless terminal
81 = SSR 6.2 mm wide, with screw terminal
91 = SSR 6.2 mm wide, with screwless terminal

Input version
$0=A C / D C$
3 = Leakage current suppression for
(110...125)V AC/DC and (230...240)V AC SSR only

7 = DC, $(6,24,60) V$ SSR only
Input voltage
See input specifications

Selecting features and options: only combinations in the same row are possible.

Type	Input version	Output version
$38.81 / 91$	7	$9024-7048-8240$
$38.81 / 91$	$0-3$	$9024-7048-8240$
$38.31 / 41$	$0-7$	$9024-8240$
38.21	0	$9024-8240$

38 Series - Relay interface modules - Technical data

Technical data-1\&2 Pole Electromechanical Relays

Insulation							
Insulation according to EN 61810-1	insulation rated voltage	V	250		400		
	rated impulse withstand	kV	4		4		
	pollution degree		3		2		
	overvoltage category		III		III		
Insulation between coil and contacts	2/50 $\mu \mathrm{s}$)	kV	6 (8 mm)				
Dielectric strength between open contacts		V AC	1,000				
Conducted disturbance immunity							
Burst (5...50)ns, 5 kHz , on A1-A2			EN 61000-4-4		level $4(4 \mathrm{kV})$		
Surge (1.2/50 $\mu \mathrm{s}$) on A1-A2 (differential mode)			EN 61000-4-5		level 3 (2 kV)		
Other data			1 Pole 6 A		1 Pole 16 A - 2 Pole 8 A		
Bounce time: NO/NC		ms	1/6		2/5		
Vibration resistance (10...55) Hz: NO/NC		g	10/5		15/2		
Power lost to the environment	without contact current	W	$0.2(12 \mathrm{~V})-0.9(240 \mathrm{~V})$		$0.5(24 \mathrm{~V})-0.9(240 \mathrm{~V})$		
	with rated current	W	0.5 (12 V) - 1.5 (240 V)		$1.3(24 \mathrm{~V})-1.7(240 \mathrm{~V})$		
Terminals			38.21 / 38.51		38.61		
Wire strip length		mm	10		10		
ϑ Screw torque		Nm	0.5		-		
Max. wire size		mm^{2}	solid cable	stranded cable	solid cable	stranded cable	
		$1 \times 2.5 / 2 \times 1.5$	$1 \times 2.5 / 2 \times 1.5$	1×2.5	1×2.5		
		AWG	1x14/2x16	$1 \times 14 / 2 \times 16$	1×14	1×14	
			38.01 / 38.52		38.11 / 38.		
Wire strip length			mm	10		10	
\bigcirc Screw torque		Nm	0.5		-		
Max. wire size			solid cable	stranded cable	solid cable	stranded cable	
		mm^{2}	$1 \times 2.5 / 2 \times 1.5$	$1 \times 2.5 / 2 \times 1.5$	1×2.5	1×2.5	
		AWG	$1 \times 14 / 2 \times 16$	$1 \times 14 / 2 \times 16$	1×14	1×14	

Contact specification-1\&2 Pole Electromagnetic Relays

F 38 - Electrical life (AC) v contact current, 1 Pole 6 A

F 38 - Electrical life (AC) v contact current, 1 Pole 16 A and 2 Pole 8 A

[^10]: 1 Pole 16 A

H 38 - Maximum DC1 breaking capacity, 1 Pole 6 A

H 38 - Maximum DC1 breaking capacity, 1 Pole 16 A and 2 Pole 8 A

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 60 \cdot 10^{3}$ (1 Pole) or $\geq 80 \cdot 10^{3}$ (2 Pole) can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications - 1 Pole 6 A Electromechnical Relay

Coil data sensitive DC, 1 Pole

Nominal voltage U_{N}	Coil code	Operating range		Rated coil	Power
		$U_{\text {min }}$	$\mathrm{U}_{\text {max }}$	I at U_{N}	P at U_{N}
V		V	V	mA	W
6	7.006	4.8	7.2	35	0.2
12	7.012	9.6	14.4	15.2	0.2
24	7.024	19.2	28.8	10.4	0.3
48	7.048	38.4	57.6	6.3	0.3
60	7.060	48	72	7	0.4

Coil data AC/DC, 1 Pole

Nominal voltage U_{N}	Coil code	Operating range		Rated coil consumption I at U_{N}	Power consumption P at U_{N}
V		V	V	mA	VA/W
12	0.012	9.6	13.2	16	0.2/0.2
24	0.024	19.2	26.4	12	0.3/0.2
48	0.048	38.4	52.8	6.9	0.3/0.3
60	0.060	48	66	7	0.5/0.5
110... 125	0.125	88	138	5(*)	0.6/0.6(*)
220... 240	0.240	176	264	4(*)	1/0.9(*)

(*) Rated coil consumption and power consumption values relate to $\mathrm{U}_{\mathrm{N}}=125$ and 240 V .

Coil data AC, 1 Pole (indicated for max ambient temperature $+70^{\circ} \mathrm{C}$)

Nominal voltage	Coil code	Operating range		Rated coil consumption	Power consumption
U_{N}		$U_{\text {min }}$	$U_{\text {max }}$	I at U_{N}	P at U_{N}
V					

Coil data, leakage current suppression types, 1 Pole

Nominal voltage U_{N}	Coil code	Operating range		Rated coil consumption I at U_{N}	Power consumption P at U_{N}
		$\mathrm{U}_{\text {min }}$	$U_{\text {max }}$		
V		V	V	mA	VA/W
(110...125) AC/DC	3.125	94	138	8(*)	1/1(*)
(230...240) AC	3.240	184	264	7(*)	1.7/0.5(*)

(*) Rated coil consumption and power consumption values relate to $U_{N}=125$ and 240 V

The 38 Series interface modules (supply version 3) have built-in leakage current suppression to address industry concerns of the contacts not dropping-out when there is residual current in the circuit; at (110...125)V AC and (230...240)V AC.

This problem can occur, for example, when connecting the interface modules to PLC,s with triac outputs or when connecting via relatively long cables.

Coil specifications - 1 Pole 16 A and 2 Pole 8 A Electromechanical Relay

Coil data sensitive DC, 1 Pole 16 A and 2 Pole 8 A

Nominal voltage U_{N}	Coil	Operating range		Rated coil	Power
code		consumption consumption			
V		$U_{\text {min }}$	$U_{\text {max }}$	I at U_{N}	P at U_{N}
12	7.012	9.6	14.4	41	0.5
24	7.024	19.2	28.8	19.5	0.5
60	7.060	48	72	8	0.5

Coil data AC/DC, 1 Pole 16 A and 2 Pole 8 A

Nominal voltage U_{N}	code	Coil corating range		Rated coil consumption	Power consumption V
24	0.024	19.2	26.4	20	$0.5 / 0.5$
60	0.060	48	66	7.1	$0.5 / 0.5$
$110 \ldots 125$	0.125	88	138	4.6	$0.6 / 0.6$
$220 \ldots 240$	0.240	184	264	3.8	$0.9 / 0.9$

Coil data AC, 1 Pole 16 A and 2 Pole 8 A

Nominal voltage U_{N}	Coil	Operating range		Rated coil	Power
consumption		$\mathrm{U}_{\text {consumption }}$			
V		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	I at U_{N}	P at U_{N}
$230 \ldots 240$	8.230	V	V	mA	VA / W

Coil specification-1 \& 2 Pole Electromagnetic Relays

R 38 - DC coil operating range v ambient temperature
1 Pole and 2 Pole

1 - Max. permitted coil voltage at nominal load (DC coil).
2 - Max. permitted coil voltage at nominal load (AC/DC coils $U \leq 60 \mathrm{~V}$).
3 - Max. permitted coil voltage at nominal load (AC/DC coils $\mathrm{U}>60 \mathrm{~V}$).
4 - Min pick-up voltage with coil at ambient temperature.

Technical data - Solid State Relays

Other data			38.81/38.91		38.31/38.41	
Power lost to the environment	without output current	W	0.25 (24 V DC)		0.5	
	with rated current	W	0.4		2.2 (DC output) / 3 (AC output)	
Terminals			38.81		38.91	
Wire strip length		mm	10		10	
\bigcirc Screw torque		Nm	0.5		-	
Max. wire size			solid cable	stranded cable	solid cable	stranded cable
		mm^{2}	1×2.5 / 2×1.5	1x2.5 / 2x1.5	1×2.5	1×2.5
		AWG	$1 \times 14 / 2 \times 16$	$1 \times 14 / 2 \times 16$	1×14	1×14
			38.31		38.41	
Wire strip length		mm	10		10	
\bigcirc Screw torque		Nm	0.5		-	
Max. wire size			solid cable	stranded cable	solid cable	stranded cable
		mm^{2}	$1 \times 2.5 / 2 \times 1.5$	$1 \times 2.5 / 2 \times 1.5$	1×2.5	1×2.5
		AWG	$1 \times 14 / 2 \times 16$	$1 \times 14 / 2 \times 16$	1×14	1×14

Input specifications - Solid State Relays type 38.81 and $38.91-6.2 \mathrm{~mm}$ wide

Input data DC

Input data - Leakage current suppression types

Nominal voltage U_{N}	Supply code	Operating range		Release voltage U	Rated coil consumption I at U_{N}	Power consumption P at U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$			
V		V	V		mA	W
110...125 AC/DC	3.125	94	138	44	8(*)	1/1(*)
230... 240 AC	3.240	184	264	72	6.5(*)	1.6/0.6(*)

(*) Rated coil consumption and power consumption values relate to $U_{N}=125$ and 240 V .

Input data AC/DC

Nominal voltage U_{N}	Supply code	Operating range		Release	Rated coil	Power
				voltage	consumption	consumption
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\max }$	U	I at U_{N}	P
V		V	V	V	mA	VA/W
110... 125	0.125	88	138	22	5.5*	0.7/0.7
220... 240	0.240	184	264	44	3.5*	1/0.9

(*) Rated coil consumption and power consumption values relate to $\mathrm{U}_{\mathrm{N}}=125$ and 240 V .

The 38 Series interface modules (supply version 3) have built-in leakage current suppression to address industry concerns of the contacts not dropping-out when there is residual current in the circuit; at (110...125)V AC and (230...240)V AC.

This problem can occur, for example, when connecting the interface modules to PLC,s with triac outputs or when connecting via relatively long cables.

Input specification - Solid State Relay types 38.31 and 38.41 - 14 mm wide

Input data DC

Nominal voltage U_{N}	Supply code	Operating range			Release voltage Rated coil	Power consumption consumption
V		$\mathrm{U}_{\min }$	$\mathrm{U}_{\max }$	U	I at U_{N}	P
12	7.012	9.6	18	5	9	0.2
24	7.024	16.8	30	5	12	0.3

Input data AC/DC

Nominal voltage U_{N}	Supply code	Operating range		Release voltage	Rated coil consumption	Powsumption cons
V		$\mathrm{U}_{\min }$	$\mathrm{U}_{\max }$	U	I at U_{N}	P
24	0.024	16.8	30	9	16.5	0.3

Additional technical data - Timed Interface Module

EMC specifications		
Type of test	Reference standard	
Electrostatic discharge contact discharge	EN 61000-4-2	4 kV
air discharge	EN 61000-4-2	8 kV
Radio-frequency electromagnetic field ($80 \div 1,000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
Fast transients (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals	EN 61000-4-4	4 kV
Surges ($1.2 / 50 \mu \mathrm{~s}$) on Supply terminals common mode	EN 61000-4-5	4 kV
differential mode	EN 61000-4-5	4 kV
Radio-frequency common mode ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals	EN 61000-4-6	10 V
Radiated and conducted emission	EN 55022	class B
Other data	EMR	SSR
Power lost to the environment without contact current W	0.1	0.1
with rated current W	0.6	0.5
Terminals	38.21	
Wire strip length mm	10	
(간) Screw torque Nm	0.5	
Max. wire size	solid cable	stranded cable
mm^{2}	$1 \times 2.5 / 2 \times 1.5$	$1 \times 2.5 / 2 \times 1.5$
AWG	$1 \times 14 / 2 \times 16$	$1 \times 14 / 2 \times 16$

Times scales

(0.1...3)s

(3...60)s

(1...20)min

(0.3...6)h

Functions

LED	Supply voltage	NO contact/output
	OFF	Open
	ON	Open (time in progress)
	ON	Closed

Wiring diagram
$\mathbf{U}=$ Supply voltage \quad = Output contact

(Al) On -delay. Apply power to timer. Output contacts transfer after preset time has elapsed. Reset occurs when power is removed.

(DI) Interval.

Apply power to timer.
Output contacts transfer immediately. After the preset time has elapsed, contacts reset.

(GI) Pulse delayed.
Apply power to timer. Output contacts transfer after preset time has elapsed. Reset occurs after a fixed time of 0.5 s .

(SW) Symmetrical flasher (starting pulse on).
Apply power to timer.
Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ratio is $1: 1$ (time on = time off).

Outline drawings

38.21

$38.51 / 38.51 .3$
38.81 / 38.81.3

Screw terminal
B

38.01
38.31
38.52

Screw terminal

38.11
38.41
38.62

Screwless terminal

Electromechanical Relay \& Socket Combinations

Screw terminal-1 Pole relay 6 A	
Interface Module Code	Coil voltage
38.51.0.012.0060	$12 \mathrm{~V} \mathrm{AC/DC}$
38.51.0.024.0060	24 V AC/DC
38.51.0.048.0060	48 V AC/DC
38.51.0.060.0060	60 V AC/DC
38.51.0.125.0060	(110...125)V AC/DC
38.51.0.240.0060	(220...240)V AC/DC
38.51.3.125.0060	(110...125)V AC/DC
38.51.3.240.0060	(230...240)V AC
38.51.7.006.0050	6 V DC
38.51.7.012.0050	12 V DC
38.51.7.024.0050	24 V DC
38.51.7.048.0050	48 V DC
38.51.7.060.0050	60 V DC
38.51.8.240.0060	(230...240)V AC

Socket

93.01.0.024
93.01.0.024
93.01.0.060
93.01.0.060
93.01.0.125
93.01.0.240
93.01.3.125
93.01.3.240
93.01.7.024
93.01.7.024
93.01.7.024
93.01.7.060
93.01.7.060
93.01.8.240
Screwless terminal - 1 Pole relay 6 A

Interface Module Code	Coil voltage	R
38.61 .0 .012 .0060	$12 \mathrm{~V} \mathrm{AC/DC}$	3
38.61 .0 .024 .0060	$24 \mathrm{~V} \mathrm{AC/DC}$	3
38.61 .0 .125 .0060	$(110 \ldots 125) \mathrm{V} \mathrm{AC/DC}$	34
38.61 .0 .240 .0060	$(220 \ldots 240) \mathrm{V} \mathrm{AC} / \mathrm{DC}$	3
38.61 .3 .125 .0060	$(110 \ldots 125) \mathrm{V} \mathrm{AC/DC}$	34
38.61 .3 .240 .0060	$(230 \ldots 240) \mathrm{V} \mathrm{AC}$	3
38.61 .7 .012 .0050	12 V DC	34
38.61 .7 .024 .0050	24 V DC	3
38.61 .8 .240 .0060	$(230 \ldots 240) \mathrm{V} \mathrm{AC}$	34

Relay	S
34.51.7.012.0010	9
34.51 .7 .024 .0010	9
34.51 .7 .060 .0010	9
34.51 .7 .060 .0010	9
34.51 .7 .060 .0010	9
34.51 .7 .060 .0010	9
34.51 .7 .012 .0010	9
34.51 .7 .024 .0010	9
34.51 .7 .060 .0010	9

Socket

93.51.0.024
93.51.0.024
93.51.0.125
93.51.0.240
93.51.3.125
93.51.3.240
93.51.7.024
93.51.7.024
93.51.8.240
Screw terminal - 1 Pole relay 16 A

Interface Module Code	Coil voltage	
38.01 .7 .012 .0050	12 V DC	
38.01 .7 .024 .0050	24 V DC	
38.01 .7 .060 .0050	60 V DC	
38.01 .0 .024 .0060	$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	
38.01 .0 .060 .0060	$60 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	
38.01 .0 .125 .0060	$125 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	
38.01 .0 .240 .0060	$240 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	
38.01 .8 .230 .0060	230 V AC	

Relay	Sock
41.61 .9 .012 .0010	93.0
41.61 .9 .024 .0010	93.0
41.61 .9 .060 .0010	93.0
41.61 .9 .024 .0010	93.0
41.61 .9 .060 .0010	93.0
41.61 .9 .110 .0010	9
41.61 .9 .110 .0010	9
41.61 .9 .110 .0010	9

Socket

93.02.7.024
93.02.7.024
93.02.7.060
93.02.0.024
93.02.0.060
93.02.0.125
93.02.0.240
93.02.8.230
Screwless terminal - 1 Pole relay 16 A

Interface Module Code	Coil voltage	R
38.11 .7 .012 .0050	12 V DC	4
38.11 .7 .024 .0050	24 V DC	4
38.11 .7 .060 .0050	60 V DC	4
38.11 .0 .024 .0060	$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	4
38.11 .0 .060 .0060	$60 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	4
38.11 .0 .125 .0060	$125 \mathrm{~V} \mathrm{AC/DC}$	4
38.11 .0 .240 .0060	$240 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	4
38.11 .8 .230 .0060	230 V AC	4
Screw terminal -2 Pole relay 8 A		

Interface Module Code	Coil voltage	R
38.52 .0 .024 .0060	$24 \mathrm{~V} \mathrm{AC/DC}$	4
38.52 .0 .060 .0060	$60 \mathrm{~V} \mathrm{AC/DC}$	4
38.52 .0 .125 .0060	$(110 \ldots 125) \mathrm{V} \mathrm{AC/DC}$	41
38.52 .0 .240 .0060	$(220 \ldots 240) \mathrm{V} \mathrm{AC} / \mathrm{DC}$	41
38.52 .7 .012 .0050	12 V DC	41
38.52 .7 .024 .0050	24 V DC	41
38.52 .7 .060 .0050	60 V DC	41
38.52 .8 .230 .0060	$(230 \ldots 240) \mathrm{V} \mathrm{AC}$	41

Relay	Socket
41.52 .9 .024 .0010	93.02 .0 .024
41.52 .9 .060 .0010	93.02 .0 .060
41.52 .9 .110 .0010	93.02 .0 .125
41.52 .9 .110 .0010	93.02 .0 .240
41.52 .9 .012 .0010	93.02 .7 .024
41.52 .9 .024 .0010	93.02 .7 .024
41.52 .9 .060 .0010	93.02 .7 .060
41.52 .9 .110 .0010	93.02 .8 .230

Interface Module Code	Coil voltage	Relay	Socket
38.62 .0 .024 .0060	$24 \mathrm{~V} \mathrm{AC/DC}$	41.52 .9 .024 .0010	93.52 .0 .024
38.62 .0 .060 .0060	$60 \mathrm{~V} \mathrm{AC/DC}$	41.52 .9 .060 .0010	93.52 .0 .060
38.62 .0 .125 .0060	$(110 \ldots 125) \mathrm{V} \mathrm{AC/DC}$	41.52 .9 .110 .0010	93.52 .0 .125
38.62 .0 .240 .0060	$(220 . .240) \mathrm{V} \mathrm{AC/DC}$	41.52 .9 .110 .0010	93.52 .0 .240
38.62 .7 .012 .0050	12 V DC	41.52 .9 .012 .0010	93.52 .7 .024
38.62 .7 .024 .0050	24 V DC	41.52 .9 .024 .0010	93.52 .7 .024
38.62 .7 .060 .0050	60 V DC	41.52 .9 .060 .0010	93.52 .7 .060
38.62 .8 .230 .0060	$(230 \ldots 240) \mathrm{V} \mathrm{AC}$	41.52 .9 .110 .0010	93.52 .8 .230

93 Series - Sockets and accessories for 38 series

Solid State Relay \& Socket Combinations - 6.2 mm wide

Screw terminal			
Interface Module Code	Input voltage	Relay	Socket
38.81.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.01.7.024
38.81.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.01.7.024
38.81.7.060.xxxx	60 V DC	34.81.7.060.xxxx	93.01.7.060
38.81.0.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.01.0.125
38.81.0.240.xxxx	(220...240)V AC/DC	34.81.7.060.xxxx	93.01.0.240
38.81.3.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.01.3.125
38.81.3.240.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.01.3.240
Screwless terminal			
Interface Module Code	Input voltage	Relay	Socket
38.91.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.51.7.024
38.91.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.51.7.024
38.91.7.060.xxxx	60 V DC	34.81.7.060.xxxx	93.51.7.060
38.91.0.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.51.0.125
38.91.0.240.xxxx	(220...240)V AC/DC	34.81.7.060.xxxx	93.51.0.240
38.91.3.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.51.3.125
38.91.3.240.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.51.3.240

Example: .xxxx
.9024
.7048
8240

Solid State Relay \& Socket Combinations - 14 mm wide

Screw terminal			
Interface Module Code	Input voltage	Relay	Socket
38.31.0.024.xxxx	24 V AC/DC	41.81.7.024.xxxx	93.02.0.024
38.31.7.012.xxxx	12 V DC	41.81.7.012.xxxx	93.02.7.024
38.31.7.024.xxxx	24 V DC	41.81.7.024.xxxx	93.02.7.024
Screwless terminal			
Interface Module Code	Input voltage	Relay	Socket
38.41.0.024.xxxx	24 V AC/DC	41.81.7.024.xxxx	93.52.0.024
38.41.7.012.xxxx	12 V DC	41.81.7.012.xxxx	93.52.7.024
38.41.7.024.xxxx	24 V DC	41.81.7.024.xxxx	93.52.7.024

SSR / EMR \& Timer Socket Combinations

Screw terminal			
Interface Module Code	Input / Coil voltage	Relay	Socket
38.21 .0 .012 .0060	$12 \mathrm{~V} \mathrm{AC/DC}$	34.51 .7 .012 .0010	93.21 .0 .024
38.21 .0 .024 .0060	$24 \mathrm{~V} \mathrm{AC/DC}$	34.51 .7 .024 .0010	93.21 .0 .024
$38.21 .0 .024 . \mathrm{xxxx}$	$24 \mathrm{~V} \mathrm{AC/DC}$	$34.81 .7 .024 . \mathrm{xxxx}$	93.21 .0 .024

Approvals (according to type):

Accessories

(18) EH[$c^{\circ} \mathbf{N}_{u s}^{\circ}$

Approvals (according to type):

Plastic separator

Thickness 2 mm , required at the start and the end of a group of interfaces.
Can be used for visual separation group, must be used for:

- protective separation of different voltages of neighbouring PLC interfaces according to VDE 0106-101 - protection of cut jumper links

Common features

- Space saving 6.2 mm wide
- Connections for 16 -way jumper link
- Integral coil indication and protection circuit
- Secure retention and easy ejection by plastic clip
- Dual screw head (blade+cross) terminals and Push-in terminals versions
- 35 mm rail mounting (EN 60715)
MasterBASIC
- For general use in any type of syste
- EMR: 6 to 24 and $125 \mathrm{~V} \mathrm{AC/DC}$,
230 V AC upply
- SSR: 6 to 24 V DC, $125 \mathrm{~V} \mathrm{AC/DC}$,

230 V AC supply

- Screw terminal and Push-in terminal

MasterPLUS

- Accepts the output fuse module, for the easy and space efficient protection of output circuits
- EMR: 6 to 125 V AC/DC, 125 and 220 V DC, 230 V AC and 24... 240 V AC/DC supply - SSR: 24-125 V AC/DC, 6 to 220 V DC, 230 V AC and 24... 240 V AC/DC supply
- Special 125 V AC/DC and 230 V AC leakage current suppression types (39.31.3, 39.61.3 EMR and 39.30.3, 39.60.3 SSR)
- Screw terminal and Push-in terminal

MasterINPUT

- Jumper link option for the quick and easy distribution of supply voltage to proximity switches and similar input devices
- EMR: 6 to 24 V and $125 \mathrm{~V} \mathrm{AC/DC}$, 230 V AC supply
- SSR: 6-24 V DC, 24 - 125 V AC/DC 230 V AC supply
- Screw terminal and Push-in terminal

MasterOUTPUT

- Jumper link option for the quick and easy distribution of supply voltage to output side and its connection to electromagnetic valves and similar output devices
- EMR: 6 to 24 V and 125 V AC/DC, 230 V AC supply
- SSR: 6 to 24 V DC, 125 V AC/DC, 230 V AC supply
- Screw terminal and Push-in terminal

MasterTIMER

- Timer adjustment via top mounted rotary knob accessible after assembly
- Control signal terminal
- DIP-switch for selection of 4 time scales and 8 functions
- Output with fuse module option
- EMR and SSR: 12 to 24 V AC/DC supply
- Screw terminal and Push-in terminal

EMR
Electromechanical Relays

- 1 CO 6 A 250 V AC
- High switching capability

SSR
 Solid State Relays

- 1 solid state output (options 0.1 A 48 V DC, 2 A 24 V DC, 2 A 240 V AC)
- Silent, high speed switching, long electrical life

39.31-39.31.3/39.61-39.61.3

39.21/39.51
39.20/39.50

39.81/ 39.91

39.80/39.90

(1) finder

Typical Applications

MasterBASIC

39.11-39.10-39.01-39.00

- For general interface use in any type of system and application.
- Can be used for input interface applications between auxiliary contacts, sensors etc. and controllers, PLCs' or motors. Or for output interface between PLC's controllers and relays, solenoids etc.

MasterPLUS

39.31-39.30-39.31.3-39.30.3-39.61-39.60-39.61.3-39.60.3

- This special version provides extra protection for the output circuit thanks to the replaceable fuse module.
- For general interface use in any type of system and application.
- Can be used for input interface applications between auxiliary contacts, sensors etc. and controllers, PLCs' or motors. Or for output interface between PLC's controllers and relays, solenoids etc.

MasterINPUT

39.41-39.40-39.71-39.70

- These models allow the full termination of input device to the interface without the need for additional terminals - saving component cost, time and panel space.
- Quick and easy distribution of supply voltage through the jumper link on the Bus-Bar (BB) connection.
- Ideal for interface applications between the auxiliary contacts, sensors, limit switches and Controllers or PLC's.

MasterOUTPUT

39.21-39.20-39.51-39.50

- These models allow the full termination of output device to the interface without the need for additional terminals - saving component cost, time and panel space. Quick and easy distribution of supply voltage through the jumper link on the Bus-Bar (BB) connection.
- Ideal for interface applications between the PLC's or Controllers and output devices such as electomagnetic valves or motors etc.

MasterTIMER

39.81-39.80-39.91-39.90

- Slim and Multifunction Timed Interface modules.

MasterBASIC - EMR

Features

1 Pole interface module, 6.2 mm wide, ideal for PLC and electronic systems

- Common connection possible with optional jumper links (terminals A1, A2 and 11) - UL Listing (certain relay/socket combinations)

- 6 A electromechanical relay
- 6 to 24 and $125 \mathrm{~V} \mathrm{AC/DC}$ and 230 V AC supply
- Screw terminal and push-in terminal
- 35 mm rail (EN 60715) mounting

39.01

Push-in terminal

For outline drawing see page 20, 21
Contact specification
Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage
Rated load AC1

Rated load AC15 (230 V AC)
Single phase motor rating (230

Breaking capacity DC1: 30/110/220 V
Minimum switching load
Standard contact ma
Supply specification
Nominal voltage $\left(U_{N}\right)$

V AC $(50 / 60 \mathrm{~Hz})$	220... 240
Rated power VA $(50 \mathrm{~Hz}) / \mathrm{W}$	See page 16
Operating range	(0.8...1.1) U_{N}
Holding voltage	$0.6 U_{N}$
Must drop-out voltage	$0.1 \mathrm{U}_{\mathrm{N}}$
Technical data	
Mechanical life AC/DC cycles	$10 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$60 \cdot 10^{3}$
Operate/release time ms	5/6
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV	$6(8 \mathrm{~mm})$
Dielectric strength between open contacts V AC	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Protection category	IP 20
Approvals relay (according to type)	PG RINA

MasterPLUS - EMR

Features

1 Pole interface modules, 6.2 mm wide, ideal for PLC and electronic systems

- Accepts output fuse module 093.63 (for $5 \times$ 20 mm fuses) for quick and easy load protection, see page 24
- Common connection possible with optional jumper links (terminals A1, A2 and 11)
- UL Listing (certain relay/socket combinations)

- 6 A electromechanical relay - 6 to $125 \mathrm{~V} \mathrm{AC/DC}$,125 and 220 V DC, 230 V AC, $24 \ldots . .240$ V AC/DC supply
- Screw terminal and push-in terminal
. 35 mm rail (EN 60715) mounting

39.31.3/39.61.3

- 6 A electromechanical relay
- Leakage current suppression version, $125 \mathrm{VAC} / \mathrm{DC}$ and 230 V AC supply
- Screw terminal and push-in terminal
$39.31 / 39.31 .3 \quad 39.61 / 39.61 .3$ Screw terminal Push-in terminal

For outline drawing see page 20, 21

Contact specification		
Contact configuration	1 CO (SPDT)	1 CO (SPDT)
Rated current/Maximum peak current A	6/10	6/10
Rated voltage/Maximum switching voltage V AC	250/400	250/400
Rated load ACl VA	1,500	1,500
Rated load AC15 (230 V AC) VA	300	300
Single phase motor rating (230 V AC) kW	0.185	0.185
Breaking capacity DC1: 30/110/220 V A	6/0.2/0.12	6/0.2/0.12
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	500 (12/10)	500 (12/10)
Standard contact material	AgNi	AgNi
Supply specification		
Nominal voltage (U_{N}) V AC/DC	6-12-24-60-110...125-24...240	110... 125
V AC $(50 / 60 \mathrm{~Hz})$	220... 240	220... 240
V DC	110..125-220	-
Rated power VA (50 Hz)/W	See page 16	See page 16
Operating range	(0.8..1.1) U_{N}	(0.8...1.1) U_{N}
Holding voltage	$0.6 U_{N}$	$0.6 U_{N}$
Must drop-out voltage	$0.1 U_{N}$	$0.3 U_{N}$
Technical data		
Mechanical life AC/DC cycles	$10 \cdot 10^{6}$	$10 \cdot 10^{6}$
Electrical life at rated load ACl cycles	$60 \cdot 10^{3}$	$60 \cdot 10^{3}$
Operate/release time ms	5/6	5/6
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV	$6(8 \mathrm{~mm})$	$6(8 \mathrm{~mm})$
Dielectric strength between open contacts V AC	1,000	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$ (+55 for $220 \vee \mathrm{DC})$	$-40 \ldots+70$
Protection category	IP20	IP20
Approvals relay (according to type)		

MasterINPUT - EMR

Features

1 Pole interface module, 6.2 mm wide, ideal for PLC and electronic systems

- Jumper link option for the quick and easy distribution of supply voltage to proximity switches and similar input devices (Bus-bar connection BB)
- Gold plated output contact as standard, for better compatibility with low energy PLC inputs
- UL Listing (certain relay/socket combinations)
39.41/39.71

- 6 A electromechanical relay
-6-12-24-125V AC/DC and 230 V AC supply
- Screw terminal and push-in terminal
- 35 mm rail (EN 60715) mounting

For outline drawing see page 20, 21
Contact specification
Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage
Rated load ACl VA
Rated load AC15 (230 V AC) VA

Single phase motor rating (230 V AC)
Breaking capacity DC1: $30 / 110 / 220 \mathrm{~V}$

Minimum switching load
Supply specification
Nominal voltage (U_{N})

MasterOUTPUT - EMR

Features

1 Pole interface modules, 6.2 mm wide, ideal for PLC and electronic systems

- Jumper link option for the quick and easy distribution of supply voltage to output side (Bus-bar connection BB) and its connection to electromagnetic valves and similar output devices
- UL Listing (certain relay/socket combinations)

-6 A electromechanical relay
- 6-12-24-125V AC/DC and 230 V AC supply
- Screw terminal and push-in terminal
- 35 mm rail (EN 60715) mounting
39.21

Screw terminal

39.51

Push-in terminal

For outline drawing see page 20, 21
Contact specification
Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage
Rated load AC1

Rated load AC15 (230 V AC)
Single phase motor rating (230

Breaking capacity DC1: $30 / 110 / 220 \mathrm{~V}$
Minimum switching load
Standard contact ma
Supply specification
Nominal voltage (U_{N})

- 6 A electromechanical relay
- 12-24 V AC/DC supply
- Screw terminal and push-in terminal
. 35 mm rail (EN 60715) mounting

For outline drawing see page 20, 21
Contact specification
Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage
Rated load AC1
Rated load AC15 (230 V AC)
Single phase motor rating (230 V AC)
Breaking capacity DC1: 30/110/220 V
Standard contact material
Supply specification

Nominal voltage $\left(U_{N}\right)$	$V A C / D C$	$12-24$
Rated power AC/DC	$V A(50 \mathrm{~Hz}) / \mathrm{W}$	See page 16
Operating range	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	
Holding voltage	$0.6 \mathrm{U}_{\mathrm{N}}$	
Must drop-out voltage	$0.1 \mathrm{U}_{\mathrm{N}}$	
Technical data	$(0.1 \ldots 3) \mathrm{s},(3 \ldots 60) \mathrm{s},(1 \ldots 20) \mathrm{min},(0.3 \ldots 6) \mathrm{h}$	
Specified time range		

Repeatability \%	± 1
Recovery time ms	≤ 50
Minimum control impulse ms	50
Setting accuracy - full range \%	5
Electrical life at rated load ACl cycles	$60 \cdot 10^{3}$
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$
Protection category	IP20
Approvals relay (according to type)	

MasterTIMER - SSR
 Features

Slim timed interface module, 6.2 mm wide, ideal for space-saving timing solutions in panels

- Timer adjustment via top mounted rotary knob; accessible after assembly
- Start terminal
- DIP-switch for selection of 4 time scales and 8 functions
- Accepts output fuse module 093.63 (for 5 x 20 mm fuses) for quick and easy load protection, see page 24
- Common connection possible with optional jumper links (terminals A1, A2 and 15+)
- UL Listing (certain relay/socket combinations)

- 0.1 or 2 A solid state relay
- 12-24 V AC/DC supply
- Screw terminal and push-in terminal
.35 mm rail (EN 60715) mounting

Al: On-delay
DI: Interval
GI: Pulse (0.5 s) delayed
SW: Symmetrical flasher (starting pulse on) BE: Off-delay with control signal CE: On- and off-delay with control signal DE: Interval with control signal on EE: Interval with control signal off

Ordering information
Example: MasterPLUS 39 series screw terminal interface module, electromechanical relay output, 1 CO (SPDT), 24 V AC/DC coil.

Type
$1=$ MasterBASIC, screw terminal
$0=$ MasterBASIC, push-in terminal
3 = MasterPLUS, screw terminal, fuse-protectable output
$6=$ MasterPLUS, push-in terminal, fuse-protectable output
4 = MasterINPUT, screw terminal
7 = MasterINPUT, push-in terminal
2 = MasterOUTPUT, screw terminal
$5=$ MasterOUTPUT, push-in terminal
$8=$ MasterTMER multifunction, screw terminal,
fuse-protectable output
$9=$ MasterTIMER multifunction, push-in terminal,
fuse-protectable output
No. of poles
1 = 1 CO (only EMR, except 39.21/51, 1 NO)
$0=1 \mathrm{NO}$ (only SSR)
Coil version, EMR / Input version, SSR
$0=A C(50 / 60 \mathrm{~Hz}) / D C$
3 = Leakage current suppression AC $(50 / 60 \mathrm{~Hz})$
$7=\mathrm{DC}$ sensitive
$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$
Coil voltage, EMR / Input voltage, SSR
See page 16

EMR - Selecting features and options: only combinations in the same row are possible. Preferred selections for best availability are shown in bold.

Type	Coil version	A	B	C	D
39.11/01	0.006-0.012	0-4-5	0	6	0
	0.024-0.125-8.230				
39.31/61	0.006-0.012	0-4-5	0	6	0
	0.024-0.060				
	0.125-0.240-8.230				
	7.125-7.220				
	3.125-3.230				
39.41/71	0.006-0.012	0-4-5	0	6	0
	0.024-0.125				
	8.230				
39.21/51	0.006-0.012	0-4-5	0	6	0
	0.024-0.125				
	8.230				
39.81/91	0.012-0.024	0	0	6	0

SSR - Selecting features and options: only combinations in the same row are possible. Preferred selections for best availability are shown in bold.

Type	Input version	Output version, ABCD
39.10/00	7.006-7.012	7048-8240-9024
	7.024-0.125-8.230	
39.30/60	7.006-7.012	7048-8240-9024
	7.024-7.060	
	7.125-7.220	
	0.024-0.125-0.240	
	8.230	
	3.125-3.230	
39.40/70	7.006-7.012	7048-8240-9024
	7.024-0.024-0.125	
	8.230	
39.20/50	7.006-7.012	7048-8240-9024
	7.024-0.125	
	8.230	
39.80/90	0.012-0.024	7048-8240-9024

Technical data

Insulation according to EN 61810-1

Other data

Bounce time (EMR) : NO/NC	ms	$1 / 6$
Vibration resistance (EMR, $10 . .55 \mathrm{~Hz}): \mathrm{NO} / \mathrm{NC}$	g	$10 / 15$
Power lost to the environment	without contact current	W
	$0.2(24 \mathrm{~V})-0.4(230 \mathrm{~V})$	
	with rated current	W

Terminals

		Screw terminal	
Wire strip length	mm	10	Push-in terminal
(f) Screw torque	Nm	0.5	8
		Solid and stranded cable	Solid and stranded cable
Max. wire size	mm^{2}	$1 \times 2.5 / 2 \times 1.5$	1×2.5
Min. wire size	AWG	$1 \times 14 / 2 \times 16$	1×14

Contact specification (EMR)

F 39 - Electrical life (AC) v contact current

H 39 - Maximum DC1 breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 60 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

39 Series - Relay interface modules - Technical data

Coil specifications - Electromechnical Relay
Coil data DC, type 39.31/61

Coil data AC/DC, type 39.11/21/31/41/01/51/61/71

Nominal Voltage U_{N}	Coil code	Operating range V			$U_{\text {min }}$ Vust drop-out voltage U_{r}	$U_{\text {max }}$ Rated input current at U_{N} I_{N}
6	$\mathbf{0 . 0 0 6}$	4.8	6.6	0.6	Rated power at U_{N}	
12	$\mathbf{0 . 0 1 2}$	9.6	13.2	1.5	15	$0.2 / 0.2$
24	$\mathbf{0 . 0 2 4}$	19.2	26.4	2.4	11	$0.25 / 0.25$
$60(1)$	$\mathbf{0 . 0 6 0}$	48	66	6.0	5.7	$0.35 / 0.35$
125 $(110 \ldots 125)$ 240 $(24 \ldots 240)(2)$	$\mathbf{0 . 1 2 5}$	88	138	12.5	5.6	$0.7 / 0.7$

(1) $60 \mathrm{~V} \mathrm{AC/DC} \mathrm{for} \mathrm{type} \mathrm{39.31/61} \mathrm{only}$
(2) $24 \ldots 240 \mathrm{~V} \mathrm{AC/DC}$ for type $39.31 / 61$ only

Coil data AC, type $39.11 / 21 / 31 / 41 / 01 / 51 / 61 / 71$

Nominal Voltage U_{N}	Coil code	Operating range		Must drop-out voltage U_{r}	Rated input current at U_{N} I_{N}	Rated power at U_{N}
V		V	V	V	mA	VA/W
$\begin{gathered} 230 \\ (230 \ldots 240) \end{gathered}$	8.230	184	264	23	4.3	1/0.4

Coil data leakage current suppression versions, type 39.31.3/61.3

Nominal Voltage U_{N}	Coil code	Operating range		Must drop-out voltage U_{r}	Rated input current at U_{N} I_{N}	Rated power at U_{N}
V		V	V	V	mA	VA/W
$\begin{gathered} 125 \\ (110 \ldots 125) \end{gathered}$	3.125	88	138	44	8.4	1.1/1
$\begin{gathered} 230 \\ (230 \ldots 240) \end{gathered}$	3.230	184	264	72	5.9	1.4/0.5

The 39 Series interface modules (supply version 3) have builtin leakage current suppression to address industry concerns of the contacts not dropping-out when there is residual current in the circuit; at (110...125)V AC/DC and (230...240)V AC. This problem can occur, for example, when connecting the interface modules to PLC,s with triac outputs or when connecting via relatively long cables.

Coil data AC/DC timer, type 39.81/91

Nominal Voltage	Coil code	Operating range (AC/DC)		Must drop-out voltage	Rated input current at U_{N}		Rated power at U_{N} U_{N}	
		$U_{\text {min }}$	$U_{\text {max }}$	U_{r}	DC	AC	DC	AC
V		V	V	V	mA	mA	W	VA / W
12	$\mathbf{0 . 0 1 2}$	9.6	13.2	1.2	15	23	0.2	$0.3 / 0.2$
24	$\mathbf{0 . 0 2 4}$	19.2	26.4	2.4	11	19	0.25	$0.4 / 0.3$

Input specifications - Solid State Relay
Input data DC, type 39.10/20/30/40/00/50/60/70

Nominal Voltage U_{N}	Input code	Operating range		Must drop-out voltage U_{r}	Rated input current at U_{N} ${ }^{\prime}{ }_{N}$	Rated power at U_{N}
V		V	V	V	mA	W
6	7.006	4.8	6.6	0.6	7.5	0.2
12	7.012	9.6	13.2	1.2	20.7	0.25
24	7.024	19.2	26.4	2.4	10.5	0.25
60 (1)	7.060	48	66	6.0	6.4	0.4
$\begin{gathered} 125(1) \\ (110 \ldots 125) \end{gathered}$	7.125	88	138	12.5	4.6	0.6
220 (1)	7.220	176	242	22	3.0	0.6

(1) $60 \mathrm{VDC}, 125 \mathrm{VDC}$ and 220 V DC for type 39.30/60 only

Input data AC/DC, type 39.10/20/30/40/00/50/60/70

Nominal Voltage U_{N}	Input code	Operating range		Must drop-out voltage U_{r}	Rated input current at U_{N} I_{N}	Rated power at U_{N}
\checkmark		V	V	\checkmark	mA	VA/W
$24^{(2)}$	0.024	19.2	26.4	2.4	17.5	0.4/0.3
$\begin{gathered} 125 \\ (110 \ldots 125) \end{gathered}$	0.125	88	138	12.5	5.5	0.7/0.7
$\begin{gathered} 240 \\ (24 \ldots 240)^{(3)} \end{gathered}$	0.240	20.4	264	2.4	17.5	1.5/0.3

(2) $24 \mathrm{~V} \mathrm{AC/DC} \mathrm{for} \mathrm{type} \mathrm{39.30/40/60/70} \mathrm{only}$
(3) $24 \ldots 240 \mathrm{~V} \mathrm{AC/DC} \mathrm{for} \mathrm{type} \mathrm{39.30/60} \mathrm{only}$

Input data AC, type 39.10/20/30/40/00/50/60/70

Nominal Voltage U_{N}	Input code	Operating range		Must drop-out voltage U_{r}	Rated input current at U_{N} I_{N}	Rated power at U_{N}
V		V	V	V	mA	VA/W
$\begin{gathered} 230 \\ (230 \ldots 240) \end{gathered}$	8.230	184	264	23	4.2	1/0.4

Input data leakage current suppression versions, type 39.30.3/60.3

Nominal Voltage U_{N}	Input code	Operating range		Must drop-out voltage U_{r}	Rated input current at U_{N} I_{N}	Rated power at U_{N}
\checkmark		V	V	V	mA	VA/W
$\begin{gathered} 125 \\ (110 \ldots 125) \end{gathered}$	3.125	88	138	44	8.4	1.1/1
$\begin{gathered} 230 \\ (230 \ldots 240) \end{gathered}$	3.230	184	264	72	5.9	1.4/0.5

The 39 Series interface modules (supply version 3) have builtin leakage current suppression to address industry concerns of the contacts not dropping-out when there is residual current in the circuit; at (110...125)V AC/DC and (230...240)V AC. This problem can occur, for example, when connecting the interface modules to PLC,s with triac outputs or when connecting via relatively long cables.

Input data AC/DC timer, type 39.80/90

Nominal Voltage	Input code	Operating range$(A C / D C)$		Must drop-out voltage	Rated input current at U_{N}		Rated power at U_{N}	
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\max }$	U_{r}	DC	AC	DC	AC
V		V	\checkmark	\checkmark	mA	mA	W	VA/W
12	0.012	9.6	13.2	1.2	15	23	0.2	0.3/0.2
24	0.024	19.2	26.4	2.4	11	19	0.25	0.4/0.3

Timer specifications

Times scales

Functions

LED	Supply voltage	NO contact/output
	OFF	Open
	ON	Open
	ON	Open (timing to close in progress)
		ON

Outline drawings - Screw terminal sockets

39.40
39.41

Screw terminal

$39.30 / 39.30 .3$
$39.31 / 39.31 .3$
Screw terminal

39.80
39.81

Screw terminal

Outline drawings - Push-in terminal sockets

$39.00 / 39.01$
$39.50 / 39.51$
Push-in termina

39.70
39.71

Push-in terminal

$39.60 / 39.60 .3$
$39.61 / 39.61 .3$
Push-in terminal

Main features

Push-in terminals

The push-in terminals permit the quick connection of solid wires or ferrules by their simple insertion into the terminal (A).
It is possible to open the terminal to extract the wire by first pushing down on the push-button using a screwdriver (C).
For stranded cable it is necessary first to open the terminal using the push button, both for the extraction (C) and insertion (B).
It is possible at any time to check the connection via the test aperture, using a 2 mm diameter test probe (D).

Electromechanical Relay (1 Pole 6 A) \& Screw Socket Combinations

Interface Module Code	Coil voltage	Relay	Socket
MasterBASIC			
39.11.0.006.0060	6 V AC/DC	34.51.7.005.0010	93.61.7.024
39.11.0.012.0060	$12 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.012.0010	93.61.7.024
39.11.0.024.0060	$24 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.024.0010	93.61.7.024
39.11.0.125.0060	(110...125)V AC/DC	34.51.7.060.0010	93.61.0.125
39.11.8.230.0060	(230...240)V AC	34.51.7.060.0010	93.61.8.230
MasterPLUS			
39.31.0.006.0060	6 V AC/DC	34.51.7.005.0010	93.63.7.024
39.31.0.012.0060	12 V AC/DC	34.51.7.012.0010	93.63.7.024
39.31.0.024.0060	24 V AC/DC	34.51.7.024.0010	93.63.7.024
39.31.0.060.0060	$60 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.060.0010	93.63.7.060
39.31.0.125.0060	(110...125)V AC/DC	34.51.7.060.0010	93.63.0.125
39.31.0.240.0060	(24...240)V AC/DC	34.51.7.024.0010	93.63.0.240
39.31.8.230.0060	(230...240)V AC	34.51.7.060.0010	93.63.8.230
39.31.7.125.0060	(110...125)V DC	34.51.7.060.0010	93.63.7.125
39.31.7.220.0060	220 V DC	34.51.7.060.0010	93.63.7.220
39.31.3.125.0060	(110...125)V AC/DC	34.51.7.060.0010	93.63.3.125
39.31.3.230.0060	(230...240)V AC	34.51.7.060.0010	93.63.3.230
MasterINPUT			
39.41.0.006.5060	6 V AC/DC	34.51.7.005.5010	93.64.7.024
39.41.0.012.5060	$12 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.012.5010	93.64.7.024
39.41.0.024.5060	24 V AC/DC	34.51.7.024.5010	93.64.7.024
39.41.0.125.5060	(110...125) V AC/DC	34.51.7.060.5010	93.64.0.125
39.41.8.230.5060	(230...240)V AC	34.51.7.060.5010	93.64.8.230
MasterOUTPUT 1 NO, 6 A only			
39.21.0.006.0060	6 V AC/DC	34.51.7.005.0010	93.62.7.024
39.21.0.012.0060	$12 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.012.0010	93.62.7.024
39.21.0.024.0060	24 V AC/DC	34.51.7.024.0010	93.62.7.024
39.21.0.125.0060	(110...125) V AC/DC	34.51.7.060.0010	93.62.0.125
39.21.8.230.0060	(230...240)V AC	34.51.7.060.0010	93.62.8.230
MasterTIMER			
39.81.0.012.0060	$12 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.012.0010	93.68.0.024
39.81.0.024.0060	24 V AC/DC	34.51.7.024.0010	93.68.0.024

Solid State Relay (1 Pole 0.1 or 2 A) \& Screw Socket Combinations

Interface Module Code	Input voltage	Relay	Socket
MasterBASIC			
39.10.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.61.7.024
39.10.7.012.xxxx	12 V DC	34.81.7.012.xxxx	93.61.7.024
39.10.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.61.7.024
39.10.0.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.61.0.125
39.10.8.230.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.61.8.230
MasterPLUS			
39.30.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.63.7.024
39.30.7.012.xxxx	12 V DC	34.81.7.012.xxxx	93.63.7.024
39.30.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.63.7.024
39.30.7.060.xxxx	60 V DC	34.81.7.060.xxxx	93.63.7.060
39.30.7.125.xxxx	(110...125)V DC	34.81.7.060.xxxx	93.63.7.125
39.30.7.220.xxxx	220 V DC	34.81.7.060.xxxx	93.63.7.220
39.30.0.024.xxxx	24 V AC/DC	34.81.7.024.xxxx	93.63.0.024
39.30.0.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.63.0.125
39.30.0.240.xxxx	(24...240)V AC/DC	34.81.7.024.xxxx	93.63.0.240
39.30.8.230.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.63.8.230
39.30.3.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.63.3.125
39.30.3.230.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.63.3.230
MasterINPUT			
39.40.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.64.7.024
39.40.7.012.xxxx	12 V DC	34.81.7.012.xxxx	93.64.7.024
39.40.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.64.7.024
39.40.0.024.xxxx	24 V AC/DC	34.81.7.024.xxxx	93.64.0.024
39.40.0.125.xxxx	(110...125) V AC/DC	34.81.7.060.xxxx	93.64.0.125
39.40.8.230.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.64.8.230
MasterOUTPUT			
39.20.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.62.7.024
39.20.7.012.xxxx	12 V DC	34.81.7.012.xxxx	93.62.7.024
39.20.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.62.7.024
39.20.0.125.xxxx	(110...125) V AC/DC	34.81.7.060.xxxx	93.62.0.125
39.20.8.230.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.62.8.230
MasterTIMER			
39.80.0.012.xxxx	$12 \mathrm{~V} \mathrm{AC/DC}$	34.81.7.012.xxxx	93.68.0.024
39.80.0.024.xxxx	24 V AC/DC	34.81.7.024.xxxx	93.68.0.024

Electromechanical Relay (1 Pole 6 A) \& Push-in Socket Combinations

Interface Module Code	Coil voltage	Relay	Socket
MasterBASIC			
39.01.0.006.0060	$6 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.005.0010	93.60.7.024
39.01.0.012.0060	$12 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.012.0010	93.60.7.024
39.01.0.024.0060	24 V AC/DC	34.51.7.024.0010	93.60.7.024
39.01.0.125.0060	(110...125)V AC/DC	34.51.7.060.0010	93.60.0.125
39.01.8.230.0060	(230...240)V AC	34.51.7.060.0010	93.60.8.230
MasterPLUS			
39.61.0.006.0060	6 V AC/DC	34.51.7.005.0010	93.66.7.024
39.61.0.012.0060	$12 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.012.0010	93.66.7.024
39.61.0.024.0060	24 V AC/DC	34.51.7.024.0010	93.66.7.024
39.61.0.060.0060	$60 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.060.0010	93.66.7.060
39.61.0.125.0060	(110...125)V AC/DC	34.51.7.060.0010	93.66.0.125
39.61.0.240.0060	(24...240) V AC/DC	34.51.7.024.0010	93.66.0.240
39.61.8.230.0060	(230...240)V AC	34.51.7.060.0010	93.66.8.230
39.61.7.125.0060	(110...125)V DC	34.51.7.060.0010	93.66 .7 .125
39.61.7.220.0060	220 V DC	34.51.7.060.0010	93.66.7.220
39.61.3.125.0060	(110...125)V AC/DC	34.51.7.060.0010	93.66.3.125
39.61.3.230.0060	(230...240)V AC	34.51.7.060.0010	93.66.3.230
MasterINPUT			
39.71.0.006.5060	$6 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.005.5010	93.67.7.024
39.71.0.012.5060	$12 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.012.5010	93.67.7.024
39.71.0.024.5060	24 V AC/DC	34.51.7.024.5010	93.67.7.024
39.71.0.125.5060	(110...125) V AC/DC	34.51.7.060.5010	93.67.0.125
39.71.8.230.5060	(230...240)V AC	34.51.7.060.5010	93.67.8.230
MasterOUTPUT 1 NO, 6 A only			
39.51.0.006.0060	6 V AC/DC	34.51.7.005.0010	93.65.7.024
39.51.0.012.0060	12 V AC/DC	34.51.7.012.0010	93.65.7.024
39.51.0.024.0060	24 V AC/DC	34.51.7.024.0010	93.65.7.024
39.51.0.125.0060	(110...125) V AC/DC	34.51.7.060.0010	93.65.0.125
39.51.8.230.0060	(230...240)V AC	34.51.7.060.0010	93.65.8.230
MasterTIMER			
39.91.0.012.0060	$12 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.012.0010	93.69.0.024
39.91.0.024.0060	24 V AC/DC	34.51.7.024.0010	93.69.0.024

Solid State Relay (1 Pole 0.1 or 2 A) \& Push-in Socket Combinations

Interface Module Code	Input voltage	Relay	Socket
MasterBASIC			
39.00.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.60.7.024
39.00.7.012.xxxx	12 V DC	34.81.7.012.xxxx	93.60.7.024
39.00.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.60.7.024
39.00.0.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.60.0.125
39.00.8.230.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.60.8.230
MasterPLUS			
39.60.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.66.7.024
39.60.7.012.xxxx	12 V DC	34.81.7.012.xxxx	93.66.7.024
39.60.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.66.7.024
39.60.7.060.xxxx	60 V DC	34.81.7.060.xxxx	93.66.7.060
39.60.7.125.xxxx	(110...125)V DC	34.81.7.060.xxxx	93.66.7.125
39.60.7.220.xxxx	220 V DC	34.81.7.060.xxxx	93.66 .7 .220
39.60.0.024.xxxx	24 V AC/DC	34.81.7.024.xxxx	93.66.0.024
39.60.0.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.66.0.125
39.60.0.240.xxxx	(24...240)V AC/DC	34.81.7.024.xxxx	93.66 .0 .240
39.60.8.230.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.66.8.230
39.60.3.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.66.3.125
39.60.3.230.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.66.3.230
MasterINPUT			
39.70.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.67.7.024
39.70.7.012.xxxx	12 V DC	34.81.7.012.xxxx	93.67.7.024
39.70.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.67.7.024
39.70.0.024.xxxx	24 V AC/DC	34.81.7.024.xxxx	93.67.0.024
39.70.0.125.xxxx	(110...125) V AC/DC	34.81.7.060.xxxx	93.67.0.125
39.70.8.230.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.67.8.230
MasterOUTPUT			
39.50.7.006.xxxx	6 V DC	34.81.7.005.xxxx	93.65.7.024
39.50.7.012.xxxx	12 V DC	34.81.7.012.xxxx	93.65.7.024
39.50.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.65.7.024
39.50.0.125.xxxx	(110...125) V AC/DC	34.81.7.060.xxxx	93.65.0.125
39.50.8.230.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.65.8.230
MasterTIMER			
39.90.0.012.xxxx	$12 \mathrm{~V} \mathrm{AC/DC}$	34.81.7.012.xxxx	93.69.0.024
39.90.0.024.xxxx	24 V AC/DC	34.81.7.024.xxxx	93.69.0.024

Accessories

C $\in E\left[{ }^{[8]}\right.$ us

Output fuse module for $39.31 / 30 / 81 / 80 / 61 / 60 / 91 / 90$ types

- For $5 \times 20 \mathrm{~mm}$ fuses up to $6 \mathrm{~A}, 250 \mathrm{~V}$
- Easy visibility of the fuse condition through the window
- Quick connection to socket

Notes

Safety: Because the output circuit can be reinstated (point 3 below), even with the fuse removed, it is important not to consider the removal of the fuse as a "safety disconnect". Always isolate elsewhere before working on the circuit. UL: According to UL508A, the fuse module cannot be installed in power circuits (in which it is mandatory that a fuse certified according to UL category JDDZ be fitted). However, where the MasterInterface is connected as an output interface to a PLC no such restrictions apply, and the fuse module can be usefully employed.

Multi-state fuse module

$\mathbf{0}$. As delivered, the socket comes without a fuse module. However, the absent fuse is internally replaced with an electrical link - which allows the interface relay to be used without a fuse module.
In this state, the peg/indicator is visually hidden and the connection is protected by a special cap.

1. With fuse module inserted after removing the cap, the fuse is positioned electrically in series with the common output terminal of the interface module (11 for EMR versions, $13+$ for SSR versions, 15 for EMR timer, $15+$ for SSR timer). This state is indicated by the peg/indicator.

2. If the fuse module is extracted (for example; because the fuse element has blown) the output circuit will be locked open, as this will generally be the "safe option".
This state is indicated by the peg/indicator.

3. In order to reinstate the output circuit it is necessary to either re-insert the fuse module (complete with functional fuse), or alternatively, return the peg/indicator to position $\mathbf{0}$ by gently applying pressure in the direction of the arrow.

Accessories

093.16

093.16 .0

093.16.1

Approvals (according to type):

C \in EH[$\mathrm{cris}_{\mathrm{us}}^{\circ}$

093.60

060.72

Dual-purpose plastic separator (1.8 mm or 6.2 mm separation)

1. By breaking off the protruding ribs (by hand), the separator becomes only 1.8 mm thick; useful for the visual separation of different groups of interfaces, or necessary for the protective separation of different voltages of neighbouring interfaces, or for the protection of cut ends of jumper links.

2. Leaving the ribs in place provides 6.2 mm separation. Simply cutting (with scissors) the relevant segment(s) permits the interconnection across the separator of 2 different groups of interface relays, using the standard jumper link.

Sheet of marker tags, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$

Terminal doubler (for socket Push-in only)	093.62
Total load	$6 \mathrm{~A}-300 \mathrm{~V}$
	$\mathrm{~mm}^{2}$
. wire size	2×1.5
AWG	2×16

39 Series - Relay interface modules 0.1-2-6 A

Accessories

MasterADAPTER
The MasterADAPTER permits the easy connection of A1/A2 terminals of up to MasterINTERFACE modules to PLC outputs via a 14 -Pole ribbon cable, plus simple 2 -wire power supply connection.

Technical data

Rated current (per signal path)	A	1
Minimum required supply power	W	3
Nominal voltage (U_{N})	V DC	24
Operating range		(0.8...1.1) U_{N}
Control logic		Positive switching (to A1)
Power supply status indication		Green LED
Ambient temperature range	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Terminals for 24 V control logic		
Type of connector		14 pole, according to IEC 60603-13
Terminals for 24 V power supply		
Wire strip length	mm	9.5
(간) Screw torque	Nm	0.5
Max. wire size		
	solid wire mm^{2}	$1 \times 4 / 2 \times 1.5$
	AWG	$1 \times 12 / 2 \times 16$
	stranded wire mm^{2}	$1 \times 2.5 / 2 \times 1.5$
	AWG	$1 \times 14 / 2 \times 16$

Wiring diagram

Features

2 Pole, forcibly guided contacts, relay interface modules, 15.8 mm wide

48.12-2 Pole 8 A (screw terminal)

- DC sensitive coils
- Relay with forcibly guided contacts according to EN 50205 Type B
- 35 mm rail (EN 60715) mounting

According to EN 50205 only 1 NO and 1 NC (11-14 and 21-22 or 11-12 and 21-24) shall be used as forcibly guided contacts.

For outline drawing see page 7

Features

1 \& 2 Pole relay interface modules, 15.8 mm wide

Ideal interface for PLC and electronic systems
48.31-1 Pole 10 A (screw terminal) 48.52-2 Pole 8 A (screw terminal)
48.72-2 Pole 8 A (screwless terminal)

- AC coils or DC sensitive coils
- Instant ejection of relay using plastic retaining clip
- Supply status indication and EMC coil suppression module as standard
- Identification label
- UL Listing (certain relay/socket combinations)
- 35 mm rail (EN 60715) mounting
$48.31 / 48.52$
Screw terminal
- 1 pole, 10 A

For outline drawing see page 7
Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated load AC1 VA

Rated load AC15 (230 V AC)
Single phase motor rating (230 V AC) kW
Breaking capacity DC1:30/110/220V A

Minimum switching load	mW
Standard contact material	

Coil specification
Nominal voltage (U_{N}) V AC $(50 / 60 \mathrm{~Hz})$

	V DC
Rated power AC/sens. DC	VA $(50 \mathrm{~Hz}) / W$

Operating range $\begin{array}{r}\text { AC } \\ \\ \hline\end{array}$

Holding voltage	AC/DC
Must drop-out voltage	AC/DC

Technical data

Mechanical life	cycles
Electrical life at rated load AC1	cycles

Operate/release time
Insulation between coil and contacts $(1.2 / 50 \mathrm{ss})$
Dielectric strength between open contacts V AC
Ambient temperature range

Protection category

- Screw terminal
- 35 mm rail (EN 60715) mounting

$12-24-110-120-230$
$(0.73 \ldots 1.5) U_{N}$
$0.8 U_{N} / 0.4 U_{N}$
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
\square

7/4
2
12 (DC)

- 2 pole, 8 A
- Screw terminal and screwless terminal . 35 mm rail (EN 60715) mounting

-110-120-230
12-24-125

$12-24-125$	$12-24-12$
$1.2 / 0.5$	$1.2 / 0.5$

$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}} \quad(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
$(0.73 \ldots 1.5) U_{N}$
$0.8 U_{N} / 0.4 U_{N}$
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$

$0 \cdot 10^{6}$	$10 \cdot 10^{6}$
10^{3}	$100 \cdot 10^{3}$

$7 / 4(\mathrm{AC})-12 / 12(\mathrm{DC})$

Features

1 \& 2 Pole relay interface modules, 15.8 mm wide
Ideal interface for PLC and electronic systems
48.61-1 Pole 16 A (screw terminal)
48.81-1 Pole 16 A (screwless terminal)
48.62-2 Pole 10 A (screw terminal)
48.82-2 Pole 10 A (screwless terminal)

- AC coils or DC sensitive coils
- Instant ejection of relay using plastic retaining clip
- Supply status indication and EMC coil suppression module as standard
- Identification label
- UL Listing (certain relay/socket combinations)
- 35 mm rail (EN 60715) mounting

- 1 pole, 16 A
- Screw terminal and screwless terminal . 35 mm rail (EN 60715) mounting
48.62/82

- 2 pole, 10 A
- Screw terminal and screwless terminal
- 35 mm rail (EN 60715) mounting

Ordering information

Example: 48 series, 35 mm rail (EN 60715) mount, screw terminal relay interface module, 2 CO (DPDT) 8 A contacts, 24 V sensitive DC coil, green LED + diode, 99.02 coil indication.

Selecting features and options: only combinations in the same row are possible.
Preferred selections for best availability are shown in bold.

Type	Coil version	A	B	C	D
48.12	DC	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$
$48.31 / 52 / 72$	AC	$\mathbf{0}-5$	0	$\mathbf{6}$	0
$48.31 / 52 / 72$	Sensitive DC	$\mathbf{0}-5$	0	$\mathbf{5}$	0
$48.61 / 81$	AC	$\mathbf{0}-4$	0	$\mathbf{6}$	0
$48.61 / 81$	Sensitive DC	$\mathbf{0}-4$	0	$\mathbf{5}$	0
$48.62 / 82$	Sensitive DC	$\mathbf{0}-4$	0	$\mathbf{5}$	0

Technical data

Insulation			48.12/31/61/62	48.52/72	48.12/31/61/62/81/82	
Insulation according to EN 61810-1	insulation rated voltage	V	250	250	400	
	rated impulse withstand voltage	kV	4	4	4	
	pollution degree		3	2	2	
	overvoltage category		III	III	III	
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$)		kV	6 (8 mm)			
Dielectric strength between open contacts		\checkmark AC	1,000; 1,500 (48.12)			
Dielectric strength between adjacent contacts		\checkmark AC	2,000 (48.52); 2,500 (48.12/62)			
Conducted disturbance immunity						
Burst (5...50)ns, 5 kHz , on A1-A2			EN 61000-4-4		level $4(4 \mathrm{kV})$	
Surge (1.2/50 $\mu \mathrm{s}$) on A1-A2 (differential mode)			EN 61000-4-5		level 3 (2 kV)	
Other data						
Bounce time: NO/NC		ms	2/5; 2/10 (48.12)			
Vibration resistance (10..200) Hz: NO/NC		g	20/5 (for 1 pole)		15/3; 20/6 (48.12) for 2 pole	
Power lost to the environment	without contact current	W	0.7			
	with rated current	W	$1.2(48.12 / 31) 1.3(48.52 / 72)$		$1.2(48.61 / 62 / 81 / 82)$	
Wire strip length		mm	8			
(8¢) Screw torque		Nm	0.5			
Max. wire size		mm^{2}	Screw terminal		Screwless terminal	
		solid cable	stranded cable	solid cable	stranded cable	
		1x6 / 2x2.5	$1 \times 4 / 2 \times 2.5$	$2 \times(0.2 \ldots 1.5)$	2x(0.2...1.5)	
		AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$	2x(24...18)	$2 \times(24 \ldots 18)$

Contact specification

F 48 - Electrical life (AC) v contact current
Types 48.31/61/81

F 48 - Electrical life (AC) v contact current
Types 48.52/72

F 48 - Electrical life (AC) v contact current Types 48.62/82

F 48 - Electrical life (AC) v contact current
Type 48.12

H 48 - Maximum DC1 breaking capacity
Types 48.62/82

H 48 - Maximum DC1 breaking capacity
Type 48.12

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications

DC coil data (0.5 W sensitive)

Nominal voltage U_{N}	Coil code	Operating range		Rated coil consumption I at U_{N}
		$\mathrm{U}_{\text {min }}{ }^{*}$	$U_{\text {max }}$	
V		V	V	mA
12	7.012	8.8	18	41
24	7.024	17.5	36	22.2
125	7.125	91	188	4

${ }^{*} U_{\text {min }}=0.8 U_{N}$ for 48.61, 48.62, 48.81 and 48.82

DC coil data, 2 pole relay - Type 48.12

Nominal voltage U_{N}	Coil	Operating range		Resistance	Rated coil consumption
V		$U_{\min }$	$\mathrm{U}_{\max }$	R	${\mathrm{I} \text { at } \mathrm{U}_{\mathrm{N}}}^{2}$
12	9.012	9	14.4	205	58.5
24	9.024	18	28.8	820	29.3

R 48 - DC coil operating range v ambient temperature

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

AC coil data

Nominal voltage U_{N}	Coil code	Operating range		Rated coil consumption V
12	8.012	$U_{\min }$	$U_{\max }$	$I_{\text {at }} U_{N}(50 H z)$
24	8.024	19.2	V	mA
110	8.110	88	13.2	90.5
120	8.120	96	132	46
230	8.230	184	253	10.1

R 48-AC coil operating range v ambient temperature

1-Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

R 48 - DC coil operating range v ambient temperature

Type 48.12

1-Max. permitted coil voltage.

2 - Min. pick-up voltage with coil at ambient temperature.

| Combinations | Code | Type of socket | Type of relay | Module | Retaining clip |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | 48.12 | 95.05 .0 | 50.12 | - | 095.71 |
| | 48.31 | 95.03 | 40.31 | 99.02 | 095.01 |
| 48.52 | 95.05 | 40.52 | 99.02 | 095.01 | |
| 48.61 | 95.05 | 40.61 | 99.02 | 095.01 | |
| 48.62 | 95.05 | 44.62 | 99.02 | 095.01 | |
| 48.72 | 95.55 | 40.52 | 99.02 | 095.91 .3 | |
| 48.81 | 95.55 | 40.61 | 99.02 | 095.91 .3 | |
| 48.82 | 95.55 | 44.62 | 99.02 | 095.91 .3 | |

Outline drawing

48.31 48.52 / 48.61 / 48.62

Screw terminal

48.72 / 48.81 / 48.82

Screwless terminal

48.12

Screw terminal

Accessories

8-way jumper link for screw terminal version

Sheet of marker tags, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$ 060.72

Rated values $\sqrt{\frac{5.1}{4}}$

060.72

Features

1 \& 2 Pole relay interface modules
$5 \mu \mathrm{~m}$ Gold plate contacts for low level switching capability
49.31-50x0-1 Pole 10 A (screw terminal) 49.52-50x0-2 Pole 8 A (screw terminal) 49.72-50x0-2 Pole 8 A (screwless terminal)

- 15.5 mm wide
- Ideal interface for PLC and electronic systems
- AC coils \& DC coils
- Instant ejection of relay using plastic retaining clip
- Supply status indication and coil suppression module
- Identification labels
- 35 mm rail (EN 60715) mounting

49.72-50×0 Screwless terminal

49.31-50x0

- 1 pole, 10 A
- $\mathrm{AgNi}+\mathrm{Au}$ contact material
- Screw terminal
. 35 mm rail (EN 60715) mounting

AC
8.xxx. 5060

DC
.xxx. 5050 9.xxx. 5050
49.52/72-50x0

- 2 pole, 8 A
- $\mathrm{AgNi}+\mathrm{Au}$ contact material
- Screw terminal and screwless terminal
- 35 mm rail (EN 60715) mounting
* By external parallel connection of the contacts the values within [1 (0.1/1)] can be acheived.

| $1 \mathrm{CO}($ SPDT $)$ |
| :---: | :---: |
| $10 / 20$ |
| $250 / 400$ |
| 2,500 |
| 500 |
| 0.37 |
| $10 / 0.3 / 0.12$ |
| $50(5 / 2)$ |
| $\mathrm{AgNi}+\mathrm{Au}$ |

Features

1 \& 2 Pole relay interface modules
AgNi contacts for medium duty switching
49.31-00x0-1 Pole 10 A (screw terminal) 49.52-00x0-2 Pole 8 A (screw terminal) 49.72-00x0-2 Pole 8 A (screwless terminal)

- 15.5 mm wide
- Ideal interface for PLC and electronic systems
- AC coils \& DC coils
- Instant ejection of relay using plastic retaining clip
- Supply status indication and coil suppression module
- Identification labels
- 35 mm rail (EN 60715) mounting

49.72-00x0 Screwless terminal

AC
8.xxx. 0060

DC
7.xxx. 0050
9.xxx. 0050

For outline drawing see page 8

Contact specification

Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC
Rated load AC1
Rated load AC 15 (230 V AC)
Single phase motor rating (230 V AC) kW
Breaking capacity DC 1:30/110/220V A
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material
Coil specification
Nominal voltage $\left(U_{N}\right) \quad V \operatorname{AC}(50 / 60 \mathrm{~Hz})$
Vated power AC/DC/sens.DC VA $(50 \mathrm{~Hz}) /$ W/W
Operating range AC

DC/sensitiv $D C$

Holding voltage	AC/DC
Must drop-out voltage	AC/DC

Technical data
Mechanical life cycles
Electrical life at rated load AC1 cycles
Operate/release time
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV
Dielectric strength between open contacts V AC
Ambient temperature range ${ }^{\circ} \mathrm{C}$

Protection category
Approvals relay (according to type)

- 1 pole, 10 A
- AgNi contact material
- Screw terminal
. 35 mm rail (EN 60715) mounting

- 1 pole, 10 A - AgNi contact material - Screw terminal - 35 mm rail (EN 60715) mounting

49.52/72-00x0

- 2 pole, 8 A
- AgNi contact material
- Screw terminal and screwless terminal
. 35 mm rail (EN 60715) mounting

Features

1 \& 2 Pole relay interface modules
AgCdO contacts for heavy duty switching
49.31-20x0-1 Pole 10 A (screw terminal) 49.52-20x0-2 Pole 8 A (screw terminal) 49.72-20x0-2 Pole 8 A (screwless terminal)

- 15.5 mm wide
- Ideal interface for PLC and electronic systems
- AC coils \& DC coils
- Instant ejection of relay using plastic retaining clip
- Supply status indication and coil suppression module
- Identification labels
- 35 mm rail (EN 60715) mounting

49.72-20×0 Screwless terminal

49.31-20x0

- 1 pole, 10 A
- AgCdO contact material
- Screw terminal
. 35 mm rail (EN 60715) mounting

- 2 pole, 8 A
- AgCdO contact material
- Screw terminal and screwless terminal
. 35 mm rail (EN 60715) mounting

AC
8.xxx. 2060

DC
7.xxx. 2050
9.xxx. 2050

AC

$$
\begin{array}{ll}
\text { 8.xxx. } 2060 & \begin{array}{l}
\text { 7.xxx. } 2050 \\
\text { 9.xxx. } 2050
\end{array}
\end{array}
$$

For outline drawing see page 8
Contact specification
Contact configuration

| Rated current/Maximum peak current $\quad \mathrm{A}$ |
| :--- | ---: |
| Rated voltage/Maximum switching voltage V AC |

Rated load AC1 VA

Rated load AC15 (230 V AC)	VA
Single phase motor rating (230 V AC)	kW

Breaking capacity DC $1: 30 / 110 / 220 \mathrm{~V}$	A
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Standard contact material

Coil specification

Nominal voltage $\left(U_{N}\right) \quad \operatorname{VAC}(50 / 60 \mathrm{~Hz})$
$\begin{array}{r}\text { V DC } \\ \text { Rated power AC/DC/sens.DC VA }(50 \mathrm{~Hz}) / \text { W/W } \\ \hline\end{array}$

Operating range $\quad \mathrm{AC}$
$\mathrm{DC} /$ sensitiv $D C$

Holding voltage	AC/DC
Must drop-out voltage	AC/DC

Technical data	
Mechanical life	cycle
Electrical life at rated load AC1	cycle
Operate/release time	m

Insulation between coil and contacts (1.2/50 $\mu \mathrm{s})$	kV
Dielectric strength between open contacts V AC	
Ambient temperature range	${ }^{\circ} \mathrm{C}$
Protection category	
Approvals relay (according to type)	

Features

1 Pole relay interface module
AgCdO contacts for heavy duty switching 49.61-00x0-1 Pole 16 A (screw terminal) 49.81-00x0-1 Pole 16 A (screwless terminal)
$\mathrm{AgSnO} \mathrm{O}_{2}$ contacts for heavy duty, high
current inrush switching
49.61-40×0-1 Pole 16 A (screw terminal) 49.81-40x0-1 Pole 16 A (screwless terminal)

- 15.5 mm wide
- Ideal interface for PLC and electronic systems
- AC coils \& DC coils
- Instant ejection of relay using plastic retaining clip
- Supply status indication and coil suppression module
- Identification labels
- 35 mm rail (EN 60715) mounting $49.81-00 \times 0 / 40 \times 0$
Screwless terminal

For outline drawing see page 8

Contact specification	
Contact configuration	
Rated current/Maximum peak current	A
Rated voltage/Maximum switching voltage	V AC
Rated load ACl	VA
Rated load AC15 (230 V AC)	VA
Single phase motor rating (230 V AC)	kW
Breaking capacity DC $1: 30 / 110 / 220 \mathrm{~V}$	A
Minimum switching load	mW
(V/mA)	
Standard contact material	

Coil specification

Nominal voltage $\left(\mathrm{U}_{\mathrm{N}}\right) \quad$ V AC $(50 / 60 \mathrm{~Hz})$
V DC
Rated power AC/DC/sens.DC VA (50 Hz)/W/W
Operating range AC
DC/sensitiv DC

Holding voltage	AC/DC
Must drop-out voltage	AC/DC

Technical data

Mechanical life cycles

Electrical life at rated load AC1 cycles

Operate/release time	ms
Insulation between coil and contacts $(1.2 / 50 \mathrm{\mu s})$	kV

Dielectric strength between open contacts V AC
Ambient temperature range
Protection category
Approvals relay (according to type)

- 1 pole, $16 \mathrm{~A}^{*}$
- AgCdO contact material . 35 mm rail (EN 60715) mounting

- Screw terminal and screwless terminal

8.xxx. 0060
7.xxx. 0050
9.xxx. 0050
* For currents $>10 \mathrm{~A}$, contact terminals must be connected in parallel
(21 with 11, 24 with 14,22 with 12).

- 1 pole, 16 A* *
- AgSnO_{2} contact material
- Screw terminal and screwless terminal
. 35 mm rail (EN 60715) mounting

AC
8.xxx. 4060
7.xxx. 4050
9.xxx. 4050

* For currents $>10 \mathrm{~A}$, contact terminals must be connected in parallel (21 with 11, 24 with 14,22 with 12).

1 CO (SPDT)
$16 * / 100(5 \mathrm{~ms})$
250/400
4,000
750
0.55

16/0.3/0.12
1,000 (10/10)
AgSnO_{2}

12-24-110-120-230
12-24-125
1.2/0.65/0.5
$(0.8 \ldots 1.1) U_{N}$
$(0.73 \ldots 1.5) U_{N} /(0.8 \ldots 1.5) U_{N}$
$0.8 U_{N} / 0.4 U_{N}$
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
$10 \cdot 10^{6}$
$100 \cdot 10^{3}$
7/4 (AC) - 12/12 (DC)
$6(8 \mathrm{~mm})$
1,000
$-40 \ldots+70$
IP 20

Ordering information

Example: 49 series, 35 mm rail (EN 60715) mount screw terminal relay interface module, 2 CO (DPDT) 8 A contacts, 24 V sensitive DC coil, green LED + diode (polarity +A1), 99.80 coil indication.

Selecting features and options: only combinations in the same row are possible. Preferred selections for best availability are shown in bold.

Type	Coil version	A	B	C	D
$49.31 / 52 / 72$	AC	$\mathbf{0}-2-5$	0	$\mathbf{6}$	0
$49.31 / 52 / 72$	DC - sens. DC	$\mathbf{0}-2-5$	0	$\mathbf{5}$	0
$49.61 / 81$	AC	$\mathbf{0}-4$	0	$\mathbf{6}$	0
$49.61 / 81$	DC - sens. DC	$\mathbf{0}-4$	0	$\mathbf{5}$	0

Technical data

F 49 - Electrical life (AC) v contact current

Types 49.52/72

H 49 - Maximum DC1 breaking capacity

Types 49.31/52/61/72/81

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications

DC coil data (0.5 W sensitive)

Nominal	Coil code	Operating range		Rated coil
U_{N}		$\mathrm{U}_{\text {min }}$ *	$U_{\text {max }}$	I at U_{N}
V		V	V	mA
12	7.012	8.8	18	41
24	7.024	17.5	36	22.2
125	7.125	91.2	188	4

$* U_{\min }=0.8 U_{N}$ for 49.61 and 49.81

DC coil data (0.65 W)

Nominal voltage U_{N}	Coil code	Operating range		Rated coil consumption
V		$U_{\min }$	$U_{\max }$	I at U_{N}
12	9.012	8.8	V	$m A$
24	9.024	17.5	36	56
125	9.125	91.2	188	29

R 49 - DC coil operating range vambient temperature Standard (650 mW)

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

AC coil data

Nominal voltage U_{N}	Coil code	Operating range		Rated coil consumption I at $U_{N}(50 H z)$
V		$U_{\min }$	$U_{\max }$	V
12	8.012	9.6	13.2	90.5
24	8.024	19.2	26.4	46
110	8.110	88	121	10.1
120	8.120	96	132	11.8
230	8.230	184	253	7.0

(1) finder

Combinations	Code	Type of socket	Type of relay	Module	Retaining clip
	49.31	95.93 .3	40.31	99.80	095.91 .3
49.52	95.95 .3	40.52	99.80	095.91 .3	
49.61	95.95 .3	40.61	99.80	095.91 .3	
49.72	95.55 .3	40.52	99.80	095.91 .3	
49.81	95.55 .3	40.61	99.80	095.91 .3	

Outline drawing

Accessories

060.72

Packaging codes

How to code and identify retaining clip and packaging options for sockets.
Example:

A Standard packaging
B Blister packaging
SP Plastic retaining clip

Features

1 \& 2 pole relay interface modules, screwless terminal socket, 15.8 mm wide.

Ideal interface for PLC and electronic systems 4C.51-1 Pole 10 A
4C.52-2 Pole 8 A

- AC coils or DC coils
- Instant ejection of relay using plastic retaining clip
- Supply status indication and coil suppression module as standard
- Identification label
- UL Listing (certain relay/socket combinations)
- 35 mm rail (EN 60715) mounting

4C. 51 / 4C. 52
Screwless terminal

For outline drawing of $4 \mathrm{C} .51 / 52$ see page 5

Contact specification		
Contact configuration	1 CO (SPDT)	2 CO (DPDT)
Rated current/Maximum peak current A	10/20	8/15
Rated voltage/Maximum switching voltage V AC	250/440	250/440
Rated load AC1 VA	2,500	2,000
Rated load AC15 (230 V AC) VA	750	350
Single phase motor rating ($230 \mathrm{VAC} \mathrm{)}$ kW	0.55	0.37
Breaking capacity DC 1:30/110/220V A	10/0.5/0.15	6/0.5/0.15
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (5/5)	300 (5/5)
Standard contact material	AgNi	AgNi
Coil specification		
Nominal voltage (U_{N}) V AC $(50 / 60 \mathrm{~Hz})$	12-24-110-120-230	12-24-110-120-230
V DC	12-24-125	12-24-125
Rated power AC/DC VA (50 Hz)/W	1.2/0.5	1.2/0.5
Operating range \quad AC	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
DC	$(0.73 \ldots 1.1) U_{N}$	$(0.73 \ldots 1.1) U_{N}$
Holding voltage AC/DC	$0.8 \mathrm{U}_{\mathrm{N}} / 0.4 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.4 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Technical data		
Mechanical life AC/DC cycles	$10 \cdot 10^{6}$	$10 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Operate/release time ms	15/5 (AC) - 15/12 (DC)	10/3 (AC) - 10/10 (DC)
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV	6 (8 mm)	$6(8 \mathrm{~mm})$
Dielectric strength between open contacts V AC	1,000	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$	$-25 \ldots+70$
Protection category	IP 20	IP 20
Approvals - relay (according to type)		

- 1 pole, 10 A
- Screwless terminal connections
- 35 mm rail (EN 60715)
- 2 pole, 8 A
- Screwless terminal connections
- 35 mm rail (EN 60715)

| $\bullet 35 \mathrm{~mm}$ rail |
| :---: | :---: |
| mounting |\quad| • |
| :---: |
| mounting |

DC

AC

Ordering information

Example: 4C series, 35 mm rail (EN 60715) mount screw terminal relay interface module, 1 CO (SPDT) 16 A contacts, 24 V DC coil, green LED + diode.

Selecting features and options: only combinations in the same row are possible. Preferred selections for best availability are shown in bold.

Type	Coil version	A	B	C	D
4 CC .02	AC	$\mathbf{0}-5$	$\mathbf{0}$	$\mathbf{6}$	$\mathbf{0}$
$4 \mathrm{4C.52}$	DC	$\mathbf{0}-5$	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{0}$
4 C .01	AC	$\mathbf{0}-4-5$	$\mathbf{0}$	$\mathbf{6}$	$\mathbf{0}$
$4 \mathrm{4C.51}$	DC	$\mathbf{0}-4-5$	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{0}$

Technical data

Insulation						
Insulation according to EN 61810-1	insulation rated voltage	V	250		440	
	rated impulse withstand	kV	4		4	
	pollution degree		3		2	
	overvoltage category		III		III	
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV			$6(8 \mathrm{~mm})$			
Dielectric strength between open contacts		V AC	1,000			
Dielectric strength between adjacent contacts		V AC	2,000			
Conducted disturbance immunity						
Burst ($5 \ldots .50$)ns, 5 kHz , on Al - A2			EN 61000-4-4		level 4 (4 kV)	
Surge (1.2/50 $\mu \mathrm{s}$) on A1-A2 (differential mode)			EN 61000-4-5		level 3 (2 kV)	
Other data						
Bounce time: NO/NC		ms	2/6 (4C.01/51)		1/4 (4C.02/52)	
Vibration resistance (10...150) Hz: NO/NC		g	20/12			
Power lost to the environment	without contact current	W	0.6			
	with rated current	W	1.6 (4C.01/51)		2 (4C.02/52)	
Terminals			$\text { 4C. } 01 / 4 \mathrm{C} .02$		4C.51/4C. 52	
Wire strip length		mm	\square 8 0.8		8	
(74)3 Screw torque		Nm			-	
Max. wire size			$\begin{array}{\|l\|} \hline \text { solid cable } \\ \hline 1 \times 6 / 2 \times 2.5 \\ \hline \end{array}$	stranded cable	solid cable	stranded cable
		mm^{2}		$1 \times 4 / 2 \times 2.5$	$2 \times(0.2 \ldots 1.5)$	$2 \times(0.2 \ldots 1.5)$
		AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$	$2 \times(24 \ldots 18)$	$2 \times(24 \ldots 18)$

Contact specification

F 4C - Electrical life (AC) v contact current Types 4C.02/52

F 4C - Electrical life (AC) v contact current
Types 4C.01/51

H 4C - Maximum DC1 breaking capacity

(*) Type 4C.01 = 12 A, Type 4C.51 $=10$ A

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications

DC coil data
Nominal voltage Coil code Operating range Resistance U_{N}
\vee

AC coil data

| $\begin{array}{c}\text { Nominal } \\ \text { voltage } \\ U_{N}\end{array}$ | $\begin{array}{c}\text { Coil } \\ \text { code }\end{array}$ | Operating range | | | Resistance |
| :---: | :---: | :---: | :---: | ---: | :---: | \(\left.\begin{array}{c}Rated coil

consumption\end{array}\right]\)

R 4C - AC coil operating range vambient temperature

[^11]

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Combinations	Code	Type of socket	Type of relay	Module	Retaining clip
	4C. 01	97.01	46.61	99.02	097.01
	4C. 02	97.02	46.52	99.02	097.01
III Certain relay/socket	4C. 51	97.51	46.61	99.02	097.01
- U1) us combinations	4C. 52	97.52	46.52	99.02	097.01

Outline drawing

Accessories

Sheet of marker tags, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$
060.72
060.72

Packaging code

How to code and identify retaining clip and packaging options for relay interface module.

Example:

$$
4 \text { C. } 0 \text { 1. } 9.024 .0 \text { 0 } 0.0
$$

8-way jumper link for 4C. 01 and 4C. 02
Rated values
Sheet of marker tags, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$

Features

4 Pole relay interface modules, 31 mm wide. Ideal interface for PLC and electronic systems 58.54-4 Pole 7 A (screwless terminals)

- AC coils and DC coils

B

- Supply status indication and coil suppression module as standard
- Identification label
- Cadmium Free contacts
- 35 mm rail (EN 60715) mounting
58.54

Screwless terminal

- Screwless terminals
- 35 mm rail (EN 60715) mounting

coll

For outline drawing see page 5
Contact specification
Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC
Rated load ACl
Rated load AC15 (230 V AC)
Single phase motor rating (230 V AC) kW
Breaking capacity DC1: 30/110/220V A

Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (5/5)
Standard contact material	AgNi
Coil specification	
Nominal voltage (U_{N})	12-24-48-110-120-230
	12-24-48-125
Rated power AC/DC VA $(50 \mathrm{~Hz}) /$ W	1.5/1
Operating range	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
	(0.8...1.1) U_{N}
Holding voltage AC/DC	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Technical data	
Mechanical life AC/DC cycles	$20 \cdot 10^{6} / 50 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$150 \cdot 10^{3}$
Operate/release time ms	11/3 (AC) - 11/15 (DC)
Insulation between coil and contacts (1.2/50 ss) kV	3.6
Dielectric strength between open contacts V AC	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	-25...+70
Protection category	IP 20

Approvals relay (according to type)
C \in (1) (D) EHI © © (B)

Ordering information

Example: 58 series 35 mm rail (EN 60715) mounting, screw terminals interface module, 4 CO (4PDT), 24 V DC coil, green LED + diode.

Technical data

Insulation						
Insulation according to EN 61810-1	insulation rated voltage	V	400 (2-3 pole)		250 (4 pole)	
	rated impulse withstand	kV	3.6 (2-3 pole)		2.5 (4 pole)	
	pollution degree		2		2	
	overvoltage category		III		II	
Insulation between coil and contacts (1.2/50 s)		kV	3.6			
Dielectric strength between open contacts		V AC	1,000			
Dielectric strength between adjacent contacts		\checkmark AC	2,000 (58.32,58.33)		1,550 (58.34, 58.54)	
Conducted disturbance immunity						
Burst ($5 \ldots 50$)ns, 5 kHz , on A1-A2			EN 61000-4-4		level $4(4 \mathrm{kV})$	
Surge (1.2/50 s) on A1-A2 (differential mode)			EN 61000-4-5		level $4(4 \mathrm{kV})$	
Other data						
Bounce time: NO/NC		ms	1/3			
Vibration resistance (10...55) Hz: NO/NC		g	6/6			
Power lost to the environment	without contact current	W	1			
	with rated current	W	3 (58.32, 58.34, 58.54)		4 (58.33)	
			58.32/33/34 (screw terminals)		58.54 (screwless terminals)	
Wire strip length		mm	8		10	
(49) Screw torque		Nm	0.5		-	
Max. wire size			solid cable	stranded cable	solid cable	stranded cable
		mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$	$2 x(0.2 \ldots 1.5)$	$2 \times(0.2 \ldots 1.5)$
		AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$	$2 \times(24 \ldots 14)$	$2 \times(24 \ldots 14)$

Contact specification

F 58 - Electrical life (AC) v contact current 2 \& 3 pole relays

F 58 - Electrical life (AC) v contact current 4 pole relay

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

AC coil data

| $\begin{array}{c}\text { Nominal } \\ \text { voltage } \\ U_{N} \\ \vee\end{array}$ | $\begin{array}{c}\text { Coil } \\ \text { code }\end{array}$ | Operating range | | | Resistance |
| :---: | :---: | :---: | :---: | ---: | :---: | \(\left.\begin{array}{c}Rated coil

absorption\end{array}\right]\)

R 58 - AC coil operating range v ambient temperature

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature

Nominal voltage U_{N} V	Coil code	Operating range		Resistance R Ω	Rated coil absorption I at U_{N} mA
		$U_{\text {min }}$	$U_{\text {max }}$		
		V	V		
12	9.012	9.6	13.2	140	86
24	9.024	19.2	26.4	600	40
48	9.048	38.4	52.8	2,400	20
125	9.125	100	138	17,300	7.2

R 58 - DC coil operating range v ambient temperature

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Accessories

6-way jumper link for type 58.54	094.56 (blue)
Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$

Sheet of marker tags, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$
060.72

060.72

Packaging codes

How to code and identify retaining clip and packaging options for sockets.
Example:

Features

2 \& 4 Pole relay interface modules, 27 mm wide.
Ideal interface for PLC and electronic systems
59.32-2 Pole 10 A (screw terminals)
59.34-4 Pole 7 A (screw terminals)

- AC coils and DC coils
- Supply status indication and coil suppression module as standard
- Identification labels
- Cadmium Free contact material options
- 35 mm rail (EN 60715) mount

For outline drawing see page 4

- 4 pole, 7 A
- Screw terminals
. 35 mm rail (EN 60715) mount

COIL

- Screw
. 35 mm rail (EN 60715) mount

$+$
Example: DC

IP 20
C \in (14) (D) EH[© ©C (H)

59 Series - Relay interface modules 7-10 A

Ordering information

Example: 59 series 35 mm rail (EN 60715) mounting, screw terminal, interface module, 4 CO (4PDT), 24 V DC coil, green LED + diode.

Technical data

Insulation				
Insulation according to EN 61810-1	insulation rated voltage	V	400 (2 pole)	250 (4 pole)
	rated impulse withstand	kV	3.6 (2 pole)	2.5 (4 pole)
	pollution degree		2	2
	overvoltage category		III	II
Insulation between coil and contacts (1.2/50 μ s)		kV	3.6	
Dielectric strength between open contacts		V AC	1,000	
Dielectric strength between adjacent contacts		V AC	2,000 (59.32)	1,550 (59.34)
Conducted disturbance immunity				
Burst (5...50)ns, 5 kHz , on Al - A2			EN 61000-4-4	level 4 (4 kV)
Surge (1.2/50 $\mu \mathrm{s}$) on A1-A2 (differential mode)			EN 61000-4-5	level 4 (4 kV)
Other data				
Bounce time: NO/NC		ms	1/3	
Vibration resistance (10...55) Hz: NO/NC		g	6/6	
Power lost to the environment	without contact current	W	1	
	with rated current	W	3	
			59.32/34 (scre	
Wire strip length		mm	8	
(74) Screw torque		Nm	0.5	
Max. wire size		mm^{2}	solid cable	stranded cable
			1×6/2x2.5	1×4/2x2.5
		AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

Contact specification

F 59 - Electrical life (AC) v contact current
2 pole relay

H 59 - Maximum DC1 breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications

DC coil data

| Nominal
 voltage
 U_{N} | Coil
 code | Operating range | | | Resistance |
| :---: | :---: | :---: | :---: | :---: | :---: | | Rated coil |
| :---: |
| absorption |
| U_{N} |

R 59 - DC coil operating range v ambient temperature

$\underset{\circ}{ } 1$ - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

F 59 - Electrical life (AC) v contact current 4 pole relay

AC coil data

Nominal voltage U_{N}	Coil code	Operating range		Resistance	Rated coil
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	I at $\mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz})$
V		V	V	Ω	mA
12	8.012	9.6	13.2	50	97
24	8.024	19.2	26.4	190	53
230	8.230	184	253	17,000	6

R 59-AC coil operating range v ambient temperature

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Code	Type of socket	Type of relay	Module	Retaining clip
59.32	94.92 .3	55.32	99.80	094.91 .3
59.34	94.94 .3	55.34	99.80	094.91 .3

Outline drawing

Accessories

Sheet of marker tags for retaining and release clip 094.91.3
060.72

Packaging codes
How to code and identify retaining clip and packaging options for sockets.
Example:

Features

Auto/Off/On output module 10 A

- Auto/Off/On output module intended to permit the automatic control of pumps, blowers or motor groups. Or, in the case of installation, maintenance or failure, to permit the load equipment to be turned "Off" or controlled under "On" control
- Ideal interface for PLC and electronic systems
- Only 11.2 mm wide
- 3 function selector switch:
- Auto: works as a monostable relay (following A3 input)
- Off: relay permanently OFF
- On: relay permanently ON
- 24 V AC/DC supply and module input
- 35 mm rail (EN 60715) mounting

Application examples:

- control of pumps, blowers or motor groups
- primarily suited to Industrial control systems

Wiring diagram

For outline drawing see page 8
Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltageV AC

Rated load AC 1	VA
Rated load AC 15 (230 V AC)	VA

Single phase motor rating (230 V AC) kW
Breaking capacity DC1 $(24 / 110 / 220 \mathrm{~V}) \mathrm{A}$
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material
Feedback contact specification (terminals B 1-B2)
Contact configuration

Maximum current	mA
Rated voltage	$\mathrm{VAC} / \mathrm{DC}$

Supply \& Input specification

Features

Override module - Auto/Off/Hand

- Auto/Off/Hand override module intended to permit the automatic control of pumps, blowers or motor groups. Or, in the case of installation, maintenance or failure, to permit the load equipment to be turned "Off" or controlled under "Hand" control
- 3 function selector switch
- Auto: work as a monostable relay relay (following A3 input)
- Off: relay output permanently Off
- Hand: relay output permanently On
- 24 V AC/DC supply \& input
- 35 mm rail (EN 60715) mounting

Application examples:

- control of pumps, blowers or motor groups commonly associated with building management systems

Wiring diagram

For outline drawing see page 8
Output specification (terminals 12-11-14)
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltageV AC
Rated load AC1 VA

Rated load AC15 (230 V AC) VA
Single phase motor rating (230 V AC) kW
Breaking capacity DC 1 (24/110/220 V) A
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Standard contact material
Feedback output specification (terminals 53-54)
Contact configuration

19.41.0.024.0000

- 1 CO output contact
- 1 feedback output contact
- 17.5 mm wide
- LED indicator

53-54 feed back information to the controller for Auto-operation A3-A2 Requested operation

Features

Override module - Auto/Off/Low/High

- Override output module intended to permit the automatic control of two-speed pumps, blowers or motor groups. Or, in the case of installation, maintenance or failure, to permit the load equipment to be turned "Off" or to run in "Low speed" or "High speed" under "Hand" control
- 4 function selector switch:

Auto: directly controlled by the BMS or PLC Off: relays permanently Off

- Hand Low: Low speed relay output permanently On
Hand High: High speed relay output permanently On
- 24 V AC/DC supply and module inputs
- 35 mm rail (EN 60715) mounting

Application examples:

- control of two-speed pumps, blowers or motor groups commonly associated with building management systems

Wiring diagram

For outline drawing see page 8
Output specification (terminals 13-14-24)
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load ACl VA
Rated load AC15 (230 V AC) VA
Single phase motor rating (230 V AC) kW
$\begin{array}{ll}\text { Breaking capacity } \\ \text { Minimum switching load } & \mathrm{mW}(\mathrm{V} / \mathrm{mA})\end{array}$
Standard contact material
Feedback output specification (terminals 53-54)
Contact configuration

Maximum / Minimum current	mA
Rated voltage	$\mathrm{V} \mathrm{AC} / \mathrm{DC}$

Supply \& Input specification

Nominal voltage (U_{N}) V AC $(50 / 60 \mathrm{~Hz})$

Rated power	VA $(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC
	DC

Protection category

19.42.0.024.0000

- Low and High output contacts
- 1 feedback output contact
- 35 mm wide
- LED indicator

53-54 feed back information to the controller for Auto-operation
A3-A2 Low speed or power operation
A4-A2 High speed or power operation (dominating again low speed or low power operation)
$\mathrm{T}=\mathrm{ON}$ delay for $13-14$ and $13-24$ is approx. 100 ms as pause for the speed shift.
By reserving motors with big moments of inertia (inertia force) from high speed to low speed an additional ON delay of approx. 20 s is recommended.

2 NO (DPST-NO)
5/15
250/400
1,250
250
0.185

3/0.35/0.2
500 (10/5)
AgCdO

1 NO (SPST-NO)
100/10
24

24
24
$1.6(50 \mathrm{~Hz}) / 0.8$
(0.8...1.1) U_{N}
$(0.8 \ldots 1.1) U_{N}$
$-20 \ldots+50$

Features

Analogue override module - Auto/Hand

 (0...10)V- Analogue output module intended to provide, by the selection switch on the front panel, a ($0 \ldots 10$) V output, automatically or by hand. With the selector switch in position " A " (Automatic) the ($0 \ldots 10$) V signal is derived from the controller.
In position " H " (Hand) the controller signal is ignored and the $(0 \ldots 10) \vee$ signal is derived directly from the potentiometer setting on the facia of the module
- The level of the $(0 \ldots 10) \mathrm{V}$ output signal is displayed by 3 green LEDs, set at $>25 \%$, $>50 \%$ and $>75 \%$.
- 24 V AC/DC supply
- 35 mm rail (EN 60715) mounting

Application examples:

- permits the direct control of proportional valves under exceptional circumstances or where the automatic controller has failed

Wiring diagram

For outline drawing see page 8
($0 . . .10$)V Signal specification (terminal Y-in)
Input control signal V DC

Green LED 25%
Green LED 50\%
Green LED 75\%
Feedback output specification (terminals 53-54)
Output configuration

Output configuration
$\begin{array}{lr}\text { Maximum / Minimum current } \mathrm{mA} \\ \text { Rated voltage } & \mathrm{V} \mathrm{AC/DC}\end{array}$
Supply \& Input specification

19.50.0.024.0000

- Analogue output ($0 . . .10$) V,
plus 1 feedback output contact
- 17.5 mm wide
- LED indicator

53-54 feed back information to the controller for Auto-operation $\mathrm{Y}_{\text {in }}-\mathrm{A} 2$ / Hand $=$ Set point (set value) ($0 . . .10$) V DC;
requested by the controller or manual

Features

Power relay module 16 A

- Suitable for Lamps load
- AgSnO_{2} contacts for heavy duty, high inrush current loads
- DC supply (12 or 24 V)
- LED indicator
- Reinforced insulation between supply and contacts
- Cadmium Free contacts
- 35 mm rail (EN 60715) mounting

Wiring diagram

19.91.9.0xx. 4000

- 1 Pole changeover contact
- 17.5 mm

For outline drawing see page 8

Contact specification	
Contact configuration	$1 \mathrm{CO}(\mathrm{SPDT})$
Rated current/Maximum peak current A	16/30 (120 A - 5 ms)
Rated voltage/Maximum switching voltage V AC	250/440
Rated load AC1 VA	4,000
Rated load AC15 (230 V AC) VA	750
Nominal lamp rating (230 V): incandescent W	2,000
compensated fluorescent W	750
Minimum switching load mW	300 (5 V/ 5 mA$)$
Standard contact material	AgSnO_{2}
Coil specification	
Nominal voltage (U_{N}) V DC	12-24
Rated power AC/DC VA (50 Hz)/W	1.2 / 0.5
Operating range	(0.8 ...1.1) U_{N}
Technical data	
Mechanical life AC/DC cycles	$10 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$80 \cdot 10^{3}$
Operate/release time ms	12/8
Ambient temperature range $\quad{ }^{\circ} \mathrm{C}$	$-20 \ldots+50$
Protection category	IP 20
Approvals (according to type)	CE EHL PG

Ordering information

Example: 19 series Auto/Off/Hand override module, 1 CO (SPDT) 5 A contact, 24 V AC/DC supply.

Series
B type
$21=$ Auto/Off/On output module, 11.2 mm
41 = Override module - Auto/Off/Hand
$42=$ Override module - Auto/Off/Low/High
50= Analogue override module (0...10) V
91 = Power relay module
Supply version
$0=A C(50 / 60 \mathrm{~Hz}) / D C$
$9=\mathrm{DC}$

Supply voltage
 $012=12 \mathrm{~V}$

$024=24 V$

Contact material
$0=$ Standard for 19.21/41/42/50
4= Standard for 19.91

Codes / Module width
19.21.0.024.0000 / 11.2 mm 19.41.0.024.0000 / 17.5 mm $19.42 .0 .024 .0000 / 35.0 \mathrm{~mm}$ 19.50.0.024.0000 / 17.5 mm 19.91.9.012.4000/17.5 mm 19.91.9.024.4000 / 17.5 mm

Technical data

Insulation	19.21	19.41/42	19.50	19.91
Dielectric strength (VAC) between supply and contacts	3,000	2,000	-	4,000
between open contacts	1,000	1,000	-	1,000
between supply and feedback output	2,000	1,500	1,500	-
EMC specifications				
Type of test	Reference standard	19.21/42/91		19.41/50
Electrostatic discharge contact discharge	EN 61000-4-2	4 kV		
air discharge	EN 61000-4-2	8 kV		
Radiated electromagnetic field ($80 \ldots 1,000 \mathrm{MHz}$)	EN 61000-4-3	$30 \mathrm{~V} / \mathrm{m}$		
Fast transients (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$)	EN 61000-4-4	4 kV		
Voltage pulses (1.2/50 $\mu \mathrm{s}$) common mode on supply terminals differential mod	EN 61000-4-5	2 kV		1 kV
	EN 61000-4-5	1 kV		0.5 kV
Terminals	19.21		19.41/42/91	
(다) Screw torque	0.5 Nm		0.8 Nm	
Max. wire size solid cable	$1 \times 6 / 2 \times 2.5 \mathrm{~mm}^{2}$	1x10/2x14 AWG	$1 \times 6 / 2 \times 4 \mathrm{~mm}^{2}$	1x10/2x12 AWG
stranded cable	$1 \times 4 / 2 \times 1.5 \mathrm{~mm}^{2}$	$1 \times 12 / 2 \times 16$ AWG	$1 \times 4 / 2 \times 2.5 \mathrm{~mm}^{2}$	1x12/2x14 AWG
Wire strip length	7 mm		9 mm	

Wiring diagrams - Application examples
Type 19.21

Type 19.41

Type 19.42

Type 19.50

In the selector position A (Automatic) the $0 \ldots 10 \mathrm{~V}$ set point of Yin - A2 is leaded, through Yout, to the end process; in the selector position H (Hand) the $0 \ldots 10 \mathrm{~V}$ value set with the regulator is leaded, through Yout, to the end process.

Outline drawings

Type 19.21
Screw terminal

B

Type 19.41
Screw terminal

Type 19.50
Screw terminal

Type 19.91
Screw terminal

Accessories

019.40

060.72

019.01

Adaptor for panel mounting, for 19.41/50/91 types, plastic, 17.5 mm wide
020.01
020.01

Adaptor for panel mounting, for 19.42 type, plastic, 35 mm wide
011.01

Application notes

Intervention Modules

The demand for security apparatus, heating, air conditioning or efficient energy use in offices, hotels, and private homes or in industrial space is growing constantly, leading to the installation of increasingly complex electronic systems. But what happens if these systems malfunction and a qualified service technician will only be available in a few hours, or even days?

With the use of carefully installed intervention modules, a trained caretaker or security guard can be in a position to recognize interruptions in service, and by manual intervention perform the necessary override actions to maintain system operation until a repair can be effected.

Digital Override control module

Auto-Off-On output module (Type 19.21)

Many processes or systems are automatically controlled by an electronic control system or by a Programmable Logic Controller. In the event of an electronic system malfunction it is important, in order to avoid damage or downtime, to plan for the possibility of controlling the process manually. An Auto-Off-On Module can provide this, located between the output of the electronic system (Controller) and the process to be controlled (End Process) - bypassing the malfunctioning control unit in a planned way. For malfunctioning electronic systems, the process to be controlled can be manually switched On or Off, as needed, using the switch on the front of the unit. Under healthy functioning of the electronic system, the switch is left in the Auto position. In this configuration the process is controlled by the normal functioning of the electronic system and its output. It may be important to know (remotely) if the process is being controlled manually or automatically, in which case the feedback contact on the Auto-Off-On module 19.21 can provide this.

Override Control Modules (Type 19.41 and 19.42) may be installed if, in the event of a electronic system malfunction, emergency working has to be restored by means of manual intervention. On notice of a malfunctioning system, perhaps through a feedback contact from a Status Indicating Module, the caretaker on-site can then go to control panel housing the appropriate Override module and respond to the malfunction by manipulation of the Auto-Off-Hand switch. The 19.41 module has a three-position switch marked A-O-H. A= Automatic operation, $\mathrm{O}=\mathrm{OFF}$ and $\mathrm{H}=$ Hand (or Manual operation).
Moving away for the Auto position means that the module's output relay is no longer under the control of the defective electronic Control System. Turning the switch to " H " energizes the output relay, whilst selecting the " O " position ensures the relay is de-energized.
For example: a defective heating control system can be manually overridden to be On in the " H " position or Off in the " O " position. In this way heating can be maintained until the faulty controller can be replaced.
The module's green LED will indicate that the Heating is On, whilst the flashing Yellow LED is a reminder that the task is under manual control, and that on the replacement of the defective electronic control system the Auto-Off-Hand switch should be returned to the " A " position.

The 19.42 override module is similar in principle to the 19.41 module except that it is intended for use with two-stage operations as associated with star-delta motor starting, two-speed fan motors, or forward/reverse motor switching. In these applications it is usually necessary to incorporate a "dead" time of $>50 \mathrm{~ms}$ between the two On states. Consequently, when manually switching with the 19.42, between the "Low" and "High" state and vice versa, a "dead" time of $>80 \mathrm{~ms}$ is provided for, within the module.

Note of caution: Where the reversal of motor direction is achieved by dual motor windings and a switched capacitor, an interval of approximately 300 ms should be provided. This will need to be provided by the inclusion of a separate timer in the control circuitry. To protect motors with a high moment of inertia (such as large fans and flywheels); when switching from high speed to lower speed, the lower speed should only be switched on when the motor has come nearly to a complete halt.

Analogue Override control module
 Analogue output module (0...10)V (Type 19.50)

This module can be installed where there is need to give a manually adjustable analog signal ($0 . . .10$) V priority over an analog signal from a electronic control unit or PLC, or to override and replace a malfunctioning signal.
The Analogue override module provides, by the selection switch on the front panel, a ($0 . . .10$) V output signal either generated automatically or by hand. With the selector switch in position "A" (Automatic) the ($0 \ldots 10$) V signal at Yout-A2 is derived from the controller signal applied to terminals Yin-A2. In position " H^{\prime} (Hand) the controller signal is ignored and the $(0 \ldots 10) \vee$ signal is derived directly from the potentiometer setting on the module front panel.
Operation in switch position H is indicated by a blinking yellow LED, and by the opening of contact 51-52 - which could be used to report the override condition to the central control room.
The level of the $(0 \ldots 10) \vee$ output signal is displayed by 3 green LEDs, set at $>25 \%,>50 \%$ and $>75 \%$.

Features

PCB Relay with forcibly guided contacts according to EN 50205 type B 2 CO contacts *

- High physical separation between adjacent contacts
- Cadmium Free contact materials
- $8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ isolation, coil-contacts
- Flux proof: RT II

*According to EN 50205 only 1 NO and 1 NC (11-14 and 21-22 or 11-12 and 21-24) shall be used as forcibly guided contacts.
For UL ratings see:
"General technical information" page V

Contact specification

Contact configuration

Rated current/Maximum peak current A	8/15	8/15
Rated voltage/Maximum switching voltage V AC	250/400	250/400
Rated load AC1 VA	2,000	2,000
Rated load AC15 (230 V AC) VA	500	500
Single phase motor rating (230 V AC) kW	0.37	0.37
Breaking capacity DC1: $30 / 110 / 220 \mathrm{~V}$ A	8/0.65/0.2	8/0.65/0.2
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	500 (10/10)	50 (5/5)
Standard contact material	AgNi	$\mathrm{AgNi}+\mathrm{Au}$
Coil specification		
Nominal voltage (U_{N}) V \quad AC $(50 / 60 \mathrm{~Hz})$	-	-
V DC	5-6-12-24-48-60-110-125	5-6-12-24-48-60-110-125
Rated power AC/DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$	$-/ 0.7$	-/0.7
Operating range \quad AC $(50 \mathrm{~Hz})$	-	-
DC	$(0.75 \ldots 1.2) U_{N}$	$(0.75 \ldots 1.2) U_{N}$
Holding voltage AC/DC	$-/ 0.4 U_{N}$	$-/ 0.4 U_{N}$
Must drop-out voltage AC/DC	$-/ 0.1 U_{N}$	$-/ 0.1 U_{N}$
Technical data		
Mechanical life AC/DC cycles	$-/ 10 \cdot 10^{6}$	$-/ 10 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Operate/release time ms	10/4	10/4
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV	$6(8 \mathrm{~mm})$	$6(8 \mathrm{~mm})$
Dielectric strength between open contacts V AC	1,500	1,500
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	$-40 \ldots+70$
Environmental protection	RT II	RT II
Approvals (according to type)	EH[PG (H) A c\% ${ }_{\text {US }}$	

50 Series - Forcibly guided contacts relay 8 A

Ordering information

Example: 50 series forcibly guided contacts, 2 CO (DPDT) 8 A contacts, 24 V DC coil.

Technical data

Insulation according to EN 61810-1		
Nominal voltage of supply system V A	230/400	
Rated insulation voltage V A	250	400
Pollution degree	3	2
Insulation between coil and contact set		
Type of insulation	Reinforced (8 mm)	
Overvoltage category	III	
Rated impulse voltage \quad kV (1.2/50 μ	6	
Dielectric strength V A	4,000	
Insulation between adjacent contacts		
Type of insulation	Basic	
Overvoltage category	III	
Rated impulse voltage kV (1.2/50 μ s	4	
Dielectric strength V A	3,000	
Insulation between open contacts		
Type of disconnection	Micro-disconnection	
Dielectric strength V AC/kV (1.2/50 μ s	1,500/2.5	
Conducted disturbance immunity		
Burst ($5 . . .50$ ns, 5 kHz , on A1-A2	EN 61000-4-4	level 4 (4 kV)
Surge (1.2/50 $\mu \mathrm{s}$) on A 1 - A2 (differential mode)	EN 61000-4-5	level 3 (2 kV)
Other data		
Bounce time: NO/NC	2/10	
Vibration resistance (10...200)Hz: NO/NC	20/6	
Shock resistance NO/NC	20/5	
Power lost to the environment without contact current	0.7	
with rated current	1.2	
Recommended distance between relays mounted on PCB mm	≥ 5	

Contact specification

F 50 - Electrical life (AC) v contact current

Alternative selection of NO and NC contacts to provide Forcibly guided (mechanically linked) contacts, in accordance with EN 50205 (type B).

H 50 - Maximum DC1 breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications

DC coil data

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
V		V	V	Ω	mA
5	9.005	3.8	6	35	143
6	9.006	4.5	7.2	50	120
12	9.012	9	14.4	205	58.5
24	9.024	18	28.8	820	29.3
48	9.048	36	57.6	3,280	14.4
60	9.060	45	72	5,140	11.7
110	9.110	82.5	131	17,250	6.4
125	9.125	93.7	150	22,300	5.6

R 50-DC coil operating range v ambient temperature Standard coil

1-Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Features

Relay module with forcibly guided contacts
75.12 with 2 pole ($1 \mathrm{NO}+1 \mathrm{NC}$)
75.14 with 4 pole ($2 \mathrm{NO}+2 \mathrm{NC}$ and $3 \mathrm{NO}+1 \mathrm{NC})$
75.16 with 6 pole ($4 \mathrm{NO}+2 \mathrm{NC}$)

- For safety applications, with class A forcibly guided contact relays (EN 50205)
- For functional reliability in machinery and plant engineering according to EN 13849-1
- For railway applications; materials compliant with fire and smoke characteristics (UNI $11170-3$); mechanical and climatic characteristics compliant with EN 61373 and EN 50155
- DC and AC supply versions
- 24 and 110 V DC versions with extended operating range ($0.7 \ldots . .1 .25$) U_{N}
- Coil status visual indication with LED
- 35 mm rail (EN 60715) mount

Screwless terminal

* Single contact current ≤ 6 A, total NO contacts current $\leq 12 \mathrm{~A}$

For outline drawing see page 6

SERIES

7S Series - Relay module with forcibly guided contacts 6 A

Ordering information

Example: 7 S series Relay module with forcibly guided contacts, 6 contact ($4 \mathrm{NO}+2 \mathrm{NC}$) 6 A, supply voltage 24 V DC

Technical data

Insulation according to EN 61810-1

*Tables below indicate, for each 7S type, those contacts (R) meeting Reinforced Insulation Overvoltage category III, those contacts (R2) meeting Reinforced Insulation Overvoltage category II, and those contacts (B) meeting Basic Insulation Overvoltage category III.

EMC specifications		Reference standard		
Burst (5/50 ns) on supply terminals		EN 61000-4-4		4 kV
Surge (1.2/50 μ s) on supply terminals differential mode		EN 61000-4-5		1.5 kV
Terminals		solid cable		stranded cable
Max. wire size	mm^{2}	1×1.5		1×1.5
	AWG	1×14		1×16
Wire strip length	mm	9		
Other data		7S. 12	75.14	75.16
Bounce time: NO/NC	ms	2/8	1/20	1/20
Vibration resistance (10...200) Hz: NO/NC	g	10/5	15/4	15/4
Shock resistance: NO/NC	g	20/6	25/13	25/13
Power lost to the environment without contact current	W	0.8	0.8	0.8
with rated current	W	1.4	2.3	2.8

Type of insulation between coil and contacts and between adjacent contacts

Code		
Type of Insulation		Overvoltage category
R	Reinforced	III
B	Basic	III
R2	Reinforced	II

7 S.12...5110			
	Coil	$13-14$	$21-22$
Coil	-	R	R
$13-14$		-	$B / R 2$
$21-22$			-

7S.14...0310					
	Coil	$13-14$	$21-22$	$33-34$	$43-44$
Coil	-	B	R	R	R
$13-14$		-	B	R	R
$21-22$			-	R	R
$33-34$				-	$B / R 2$
$43-44$					-

7S.14...0220					
	Coil	$11-12$	$21-22$	$33-34$	$43-44$
Coil	-	R	R	R	R
$11-12$		-	R	R	R
$21-22$			-	R	R
$33-34$				-	$B / R 2$
$43-44$					-

7S.16.... 0420							
	Coil	13-14	21-22	31-32	43-44	53-54	63-64
Coil	-	B	R	R	R	R	R
13-14		-	B	R	R	R	R
21-22			-	R	R	R	R
31-32				-	B/R2	R	R
43-44					-	B/R2	R
53-54						-	B/R2
63-64							-

Contact specifications

F 7S12-Electrical life (AC) v contact current - 7S.12

F 7S16 - Electrical life (AC) v contact current - 7S.14 / 7S.16

H 7S12-Maximum DC breaking capacity - 7S. 12

- When switching a load having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.

H 7S16-Maximum DC breaking capacity - 7S.14 / 7S.16

- When switching a load having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.

Coil specifications

DC coil data - type 7S. 12

Nominal voltage	Coil code	Operating range		Rated input current at U_{N} U_{N}	
V		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	Rated power at U_{N}	
12	9.012	9.6	14.4	55	VA
24	9.024	16.8	30	38.2	0.7

DC coil data - type 7S.14 / 7S.16

Nominal voltage	Coil code	Operating range		Rated input current at U_{N}	Rated power at U_{N}
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	I_{N}	
V		V	V	mA	W
12	9.012	9.6	14.4	56	0.7
24	9.024	16.8	30	28	0.7
110	9.110	77	138	9.2	0.7

R 7S - DC coil operating range v ambient temperature 7S. 12 / 7S. 14 / 7S. 16

1-Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.
---- 24 and 110 V DC coils only (extended range)

AC coil data - type 7S. 12

Nominal voltage	Coil code	Operating range		Rated input current at U_{N} U_{N}	
V	$U_{\text {min }}$	$U_{\text {max }}$	Rated power at U_{N}		
$110 \ldots 125$	8.120	93	138	9.5	$1.1 / 1$
$230 \ldots 240$	8.230	195	264	9	$2 / 0.8$

AC coil data - type 7S.14 / 7S.16

Nominal voltage	Coil code	Operating range		Rated input current at U_{N}	Rated power at U_{N}
U_{N}		$U_{\text {min }}$	$U_{\text {max }}$	I_{N}	
V	V	V	$m A$	$V A / W$	
$110 \ldots 125$	8.120	93	138	8.9	$1.1 / 0.9$
$230 \ldots 240$	8.230	195	264	8.5	$2 / 0.8$

R 7S - AC coil operating range v ambient temperature -

7S. 12 / 7S. 14 / 7S. 16

[^12]
Outline drawings

7S
Screwless terminal

Accessories

- पाताताTM	
-	
-	
-	

Features

5 A modular SSR, 1 NO output

- 17.5 mm housing
- 60 to 240 V AC output (with back to back SCR)
- $5 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ insulation between Input and Output
- Zero-crossing and random switch-on versions available
- High switching speed
- High endurance
- Silent switching
- Spark and bounce-free switching
- Low control power
- 35 mm rail (EN 60715) mount

77.01

Screw terminal

* See L77-3 diagram page 10
** See L77-1 and L77-2 diagrams page 9
For outline drawing see page 12
Output specification
Output configuration
Rated current $I_{N} /$ Max. peak current* (10 ms) A

Rated voltage	V AC $(50 / 60 \mathrm{~Hz})$
Rated voltage range	$\mathrm{V} \mathrm{AC}(50 / 60 \mathrm{~Hz})$

Switching voltage range V AC $(50 / 60 \mathrm{~Hz})$
Repetitive peak off-state voltage $\quad \mathrm{Vpk}$

Rated load AC7a $(\cos \varphi=0.8)$	A
Rated load AC15	A

Single phase motor rating (230 V AC) kW
230 V lamps rating: incandescent/halogen W

Input specification

Nominal voltage $\left(U_{N}\right) \quad$ V AC $(50 / 60 \mathrm{~Hz})$

Rated power	VA $(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	V AC $(50 / 60 \mathrm{~Hz})$
Must drop-out voltage	$\mathrm{V} \mathrm{AC}(50 / 60 \mathrm{~Hz}) / \mathrm{DC}$
Technical data	
Electrical life	cycles

Operate / release time	ms
Insulation between input and output (1.2/50 $\mu \mathrm{s})$	kV
Ambient temperature	${ }^{\circ} \mathrm{C}$
Protection category	
Approvals (according to type)	

77.01.x.xxx. 8050

Zero-crossing switch-on

Suggested applications:

- Lamp inrush current reduction (CFL - Compact

Fluorescent energy-saving Lamps and similar)

- Heater control
- Solenoid, contactor driver

77.01.x.xxx. 8051

Random switch-on

Suggested applications:

- Finer control requiring short operate time (specially motor control)
- AC Input phase different from AC Output phase - 3-phase general purpose

Features

15 A modular SSR, 1 NO output

- 22.5 mm housing, heat-sink + plastic cover
- 24 to 277 V AC output (with triac)
- $6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ insulation between Input and Output
- Zero-crossing and random switch-on versions available
- High switching speed
- High endurance
- Silent switching
- Spark and bounce-free switching
- Low control power
- "Relay-style" terminal arrangement (input and output terminals on opposite sides) - 35 mm rail (EN 60715) mount

D
77.11

Screw terminal

* See L77-7 diagram page 10
* * See L77-6 diagrams page 9

For outline drawing see page 12
Output specification
Output configuration
Rated current $\mathrm{I}_{\mathrm{N}} /$ Max. peak current* (10 ms) A
Rated voltage $\quad V$ AC $(50 / 60 \mathrm{~Hz})$

Rated voltage range	V AC $(50 / 60 \mathrm{~Hz})$
Switching voltage range	V AC $(50 / 60 \mathrm{~Hz})$

Repetitive peak off-state voltage
Rated load AC7a ($\cos \varphi=0.8$, @ $25^{\circ} \mathrm{C}$)
Rated load AC15
Single phase motor rating (230 V AC)
230 V lamps rating: incandescent/halogen W
compact fluorescent (CFL)/Led W
electromagnetic ballast compensated fluorescent tubes W
Minimum switching current @ 250 V mA
Typical "OFF-state" leakage current @ 250 V mA
Max "ON-state" voltage drop @ $25^{\circ} \mathrm{C}$ and 15 AV
Power loss @ 15 A
Input specification
Nominal voltage (U_{N})
$\begin{array}{lr} & \text { V DC } \\ \text { Rated power @ UMAX } & \text { VA }(50 \mathrm{~Hz}) / \text { W } \\ \text { Operating range } & \text { V AC }(50 / 60 \mathrm{~Hz})\end{array}$
V DC
V AC $150 / 60 \mathrm{~Hz}) / D C$
Must drop-out voltage VAC $(50 / 60 \mathrm{~Hz}) / \mathrm{DC}$
Technical data
Electrical life
cycles
Operate / release time
Insulation between input and output (1.2/50 $\mu \mathrm{s}$)
Ambient temperature
Protection category
Approvals (according to type)
)
(

A
A
N

N
77.11.x.xxx. 8250

Zero-crossing switch-on

Suggested applications:

- Lamp inrush current reduction (CFL - Compact

Fluorescent energy-saving Lamps and similar)

- Heater control
- Solenoid, contactor driver

1 NO (SPST-NO)
$15 / 400$ *

$15 / 400 *$
230

1.55	
14	
-	230

-	230	-	230
24	-	24	-
0.4	7.5 / 0.9	0.4	7.5 / 0.9
-	40... 305	-	40... 305
4... 32	-	4... 32	-
$-/ 2$	$6 /-$	$-/ 2$	$6 /-$
$<10 /<10$	< $10 /<30$	$<1 /<10$	< $2 /<25$
CE EHL PG a ${ }_{\text {ctu }}$			

Features

30 A modular SSR, 1 NO output

- 22.5 mm housing, heat-sink + plastic cover
- 60 to 440 V AC output (with back to back SCR)
- $6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ insulation between Input and Output
- Zero-crossing and random switch-on versions available
- High switching speed
- High endurance
- Silent switching
- Spark and bounce-free switching
- Low control power
- "Relay-style" terminal arrangement (input and output terminals on opposite sides)
- 35 mm rail (EN 60715) mount

77.31

Screw terminal

* See L77-5 diagram page 10
* * See L77-4 diagrams page 9

For outline drawing see page 12
Output specification
Output configuration
Rated current $I_{N} /$ Max. peak current* (10 ms) A
Rated voltage $\quad V$ AC $(50 / 60 \mathrm{~Hz})$

Rated voltage range	$\operatorname{VAC}(50 / 60 \mathrm{~Hz})$
Switching voltage range	$\operatorname{VAC}(50 / 60 \mathrm{~Hz})$

Repetitive peak off-state voltage $\quad V_{p k}$

Rated load AC7a $(\cos \varphi=0.8)$	A
Rated load AC15	

Single phase motor rating (230 V AC) kW
230 V lamps rating: incandescent/halogen W
$\frac{\text { compact fluorescent (CFL)/Led W }}{\text { electronic ballast fluorescent tubes W }}$
electromagnetic ballast compensated fluorescent tubes W
Minimum switching current @ 400 V mA
Max "ON-state" voltage drop @ $25^{\circ} \mathrm{C}$ and 30 AV
Power loss @ 30 A
Input specification

Nominal voltage $\left(U_{N}\right)$	V AC $(50 / 60 \mathrm{~Hz})$
	V DC
Rated power @ UMAX	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	$\mathrm{V} \mathrm{AC}(50 / 60 \mathrm{~Hz})$
	V DC
Must drop-out voltage	$\mathrm{V} \mathrm{AC}(50 / 60 \mathrm{~Hz}) / \mathrm{DC}$
Technical data	
Electrical life	cycles

77.31.x.xxx. 8050

Zero-crossing switch-on

Suggested applications:

- Lamp inrush current reduction (CFL - Compact

Fluorescent energy-saving Lamps and similar)

- Heater control
- Solenoid, contactor driver

diagram

1 NO (SPST-NO)
30/520 *
$30 / 520$
400

\square

60... 440
48... 480

1,100
77.31.x.xxx. 8051

Random switch-on

Suggested applications:

- Fine controls involving shorter time (specially motor control)
\square
V

6,00
6,00

Features

30 A modular SSR, 1 NO output

- 22.5 mm housing, heat-sink + plastic cover
- 60 to 440 V AC output (with back to back SCR)
- $6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ insulation between Input and Output
- Zero-crossing and random switch-on versions available
- High switching speed
- High endurance
- Silent switching
- Spark and bounce-free switching
- Low control power
- "Contactor-style" terminal arrangement (input and output terminals on adjacent sides) - 35 mm rail (EN 60715) mount

77.31

Screw terminal

* See L77-5 diagram page 10
* * See L77-4 diagrams page 9

For outline drawing see page 12
Output specification
Output configuration
Rated current $\mathrm{I}_{\mathrm{N}} /$ Max. peak current* (10 ms) A
Rated voltage $\quad \operatorname{VAC}(50 / 60 \mathrm{~Hz})$

Rated voltage range	V AC $(50 / 60 \mathrm{~Hz})$
Switching voltage range	V AC $(50 / 60 \mathrm{~Hz})$

Repetitive peak off-state voltage Vpk
Rated load AC7a $(\cos \varphi=0.8) \quad$ A
Rated load AC 15
Single phase motor rating (230 V AC)
230 V lamps rating: incandescent/halogen W compact fluorescent (CFL)/Led W electromagnetic ballast compensated fluorescent tubes W
Minimum switching current @ 400 V mA
Typical "OFF-state" leakage current @ 400 VmA
Max "ON-state" voltage drop @ $25^{\circ} \mathrm{C}$ and 30 AV

Input specification

Nominal voltage $\left(U_{N}\right) \quad V \operatorname{AC}(50 / 60 \mathrm{~Hz})$

	V DC
Rated power @ UMAX	VA $(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	$\mathrm{V} \mathrm{AC}(50 / 60 \mathrm{~Hz})$

Must drop-out voltage VAC $(50 / 60 \mathrm{~Hz}) / D C$
Technical data
Electrical life
cycles

Operate / release time
Insulation between input and output (1.2/50 $\mu \mathrm{s}$)

Ambient temperature
Protection category
Approvals (according to type)
-

77.31.x.xxx. 8070

Zero-crossing switch-on

Suggested applications:

- Lamp inrush current reduction (CFL - Compact

Fluorescent energy-saving Lamps and similar)

- Heater control
- Solenoid, contactor driver

Random switch-on

Suggested applications:

- Fine controls involving shorter time (specially motor control)
 diagram -
$\mathrm{A}^{\text {A2 }} \underset{14}{\text { Load }}$

1 NO (SPST-NO)
$30 / 520$ *
400
60... 440
48... 480

NO (SPST-NO) $30 / 520$ *
\square

400
60... 440
48... 480

1
1,100
1,100
30
30

V
N
W

0.85
16
-
24

-	230	-	230
24	-	24	-
0.4	7.5 / 0.9	0.4	7.5 / 0.9
-	40... 280	-	40... 280
4... 32	-	4... 32	-
$-/ 2$	$6 /-$	$-/ 2$	$6 /-$
$10 \cdot 10^{6}$		$10 \cdot 10^{6}$	
< $10 /<10$	< $10 /<30$	$<1 /<10$	< $2 /<25$
6		6	
-20...+80 **			
IP20			
CE EH[PG © $\mathrm{PH}^{\text {u }}$			

77 Series - Hockey puck Solid State Relay, 25-40-50 A

Features

25, 40 and 50 A panel SSR, "hockey puck" style

- "hockey puck" housing with cover
- 48 to 600 V AC output
- Zero-crossing version
- High switching speed
- High endurance
- Silent switching
- Spark and bounce-free switching
- Low control power
- "Relay-style" terminal arrangement (input and output terminals on opposite sides) - Mounting on heatsink with screws

$77 . \times 5$

Screw terminal (plate clamp)

* See L77-1 1 diagrams page 10
* * See L77-8, L77-9 and L77-10 diagrams page 9

For outline drawing see page 12
Output specification
Output configuration
Rated current $\mathrm{I}_{\mathrm{N}} /$ Max. peak current* (10 ms) A
Rated voltage V AC $(50 / 60 \mathrm{~Hz})$

Rated voltage range $\quad V$ AC $(50 / 60 \mathrm{~Hz})$
Switching voltage range V AC $(50 / 60 \mathrm{~Hz})$
Repetitive peak off-state voltage $\quad \mathrm{Vpk}$
Minimum switching current @ 250 V mA
Typical "OFF-state" leakage current @ 250 V mA
Max "ON-state" voltage drop @ $25^{\circ} \mathrm{C}$ and $\mathrm{I}_{\mathrm{N}} \mathrm{V}$

Input specification

Nominal voltage (U_{N})

Rated power @ UMAX	VA $(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	V AC $(50 / 60 \mathrm{~Hz})$
	V DC
Must drop-out voltage	V AC $(50 / 60 \mathrm{~Hz}) / \mathrm{DC}$
Technical data	
Electrical life	cycles
Operate / release time	ms

Operate / release time
Insulation between input and output (1.2/50 $\mu \mathrm{s}$)

Ambient temperature
Protection category
Approvals (according to type)
77.25.x.xxx. 8650
 ,

Zero-crossing switch-on

 - Output: 25 A / 600 V AC - Suggested applications: heater control77.45.x.xxx. 8650

Zero-crossing switch-on

- Output: 40 A / 600 V AC
- Suggested applications: heater control
77.55.x.xxx. 8650

Zero-crossing switch-on

- Output: 50 A / 600 V AC
- Suggested applications: heater control

Simplified circuit diagram

Ordering information

Example: 77 series modular SSR, 1 output 30 A AC , input voltage 230 VAC , relay style terminals arrangement, zero-crossing switch-on.

Type/rated current

$0=5 \mathrm{~A}$ output (77.01)
$1=15 \mathrm{~A}$ output (77.11)
$2=25 \mathrm{~A}$ output (77.25)
$3=30 \mathrm{~A}$ output (77.31)
$4=40 \mathrm{~A}$ output (77.45)
$5=50$ A output (77.55)
No. of poles/mounting
$1=1$ pole, modular housing (plastic or heat sink/plastic), DIN rail mounting
$5=1$ pole, heatsink or directly panel mounting ("hockey puck")

Input version

$0=$ DC/AC $(50 / 60 \mathrm{~Hz})$
$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$
$9=\mathrm{DC}$

Supply voltage

See "input specification"

Codes / Module width

$77.01 .8 .230 .8050 / 17.5 \mathrm{~mm} 5 \mathrm{~A}$
77.01.0.024.8050 / 17.5 mm 5 A 77.01.8.230.8051 / 17.5 mm 5 A
77.01.0.024.8051 / 17.5 mm 5 A
77.11.8.230.8250 / 22.5 mm 15 A 77.11.9.024.8250 / 22.5 mm 15 A 77.11.8.230.8251 / 22.5 mm 15 A 77.11.9.024.8251 / 22.5 mm 15 A
$77.31 .8 .230 .8050 / 22.5 \mathrm{~mm} 30 \mathrm{~A}$ 77.31.9.024.8050 / 22.5 mm 30 A 77.31.8.230.8051 / 22.5 mm 30 A 77.31.9.024.8051 / 22.5 mm 30 A 77.31.8.230.8070 / 22.5 mm 30 A 77.31.9.024.8070 / 22.5 mm 30 A 77.31.8.230.8071 / 22.5 mm 30 A 77.31.9.024.8071 / 22.5 mm 30 A

Technical data

77.25.8.230.8250 / hockey puck 25 A 77.25.9.024.8250 / hockey puck 25 A 77.25.8.230.8650 / hockey puck 25 A 77.25.9.024.8650 / hockey puck 25 A 77.45.8.230.8250 / hockey puck 40 A 77.45.9.024.8250 / hockey puck 40 A 77.45.8.230.8650 / hockey puck 40 A 77.45.9.024.8650 / hockey puck 40 A 77.55.8.230.8250 / hockey puck 50 A 77.55.9.024.8250 / hockey puck 50 A 77.55.8.230.8650 / hockey puck 50 A 77.55.9.024.8650 / hockey puck 50 A

Insulation

Input specification
77.01

$\left.$| $\begin{array}{c}\text { Nominal } \\ \text { voltage }\end{array}$ | $\begin{array}{l}\text { Input } \\ \text { code }\end{array}$ | Operating range | | | | | $\begin{array}{c}\text { Must } \\ \text { drop-out }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{l}Input

current\end{array} \right\rvert\, $$
\begin{array}{c}\text { voltage }\end{array}
$$\right)\)

Led indication

LED	Supply voltage
	OFF
	ON

77.11

D

Nominal voltage	Input code	Operating range				Must drop-out voltage (AC/DC)	Input current I_{N} at U_{N}
		AC		DC			
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
V		V	V	V	V	V	mA
24	9.024	-	-	4	32	2	11
230	8.230	40	305	-	-	6	25

77.31

Nominal voltage	Input code	Operating range				Must drop-out voltage (AC/DC)	Input current$I_{N} \text { at } U_{N}$
		AC		DC			
U_{N}		$U_{\text {min }}$	$\mathrm{U}_{\text {max }}$	$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
V		V	V	V	V	\checkmark	mA
24	9.024	-	-	4	32	2	11
230	8.230	40	280	-	-	6	25

77.x5.x.xxx. 8250

Nominal voltage	Input code	Operating range				Must drop-out voltage (AC/DC)	Input current
		AC		DC			
U_{N}		$\mathrm{U}_{\text {min }}$	$U_{\text {max }}$	$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		I_{N} at U_{N}
V		V	V	V	V	\checkmark	mA
24	9.024	-	-	3	32	1	22
230	8.230	90	280	-	-	10	20

77.x5.x.xxx. 8650

Nominal voltage	Input code	Operating range				Must drop-out voltage (AC/DC)	Input current I_{N} at U_{N}
		AC		DC			
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
V		V	V	V	V	V	mA
24	9.024	-	-	4	32	1	25
230	8.230	90	280	-	-	10	10

Output specification

L77-1 Output RMS current v ambient temperature 77.01.0.024.805x @ 32 V DC

L77-2 Output RMS current v ambient temperature

 77.01.8.230.805x @ 265 V AC

I- Modular SSR installed as a group (without gap)
II - Modular SSR installed as a group (9 mm gap between each SSR)
III - Modular SSR installed individually in free air (without a significant influence from nearby components)

L77-6 Output RMS current v ambient temperature 77.11.x.xxx.82xx

I - Modular SSR installed as a group (without gap)
II - Modular SSR installed individually in free air, or with a gap $\geq 20 \mathrm{~mm}$, which implies a not significant influence from nearby components

L77-10 Output RMS current v ambient temperature 77.25.x.xxx.8x50

1 - Installation on 0.77.25 heat-sink ($2 \mathrm{~K} / \mathrm{W}$)
2 -Installation individually in free-air

L77-8 Output RMS current v ambient temperature

77.55.x.xxx.8x50

L77-4 Output RMS current v ambient temperature 77.31.x.xxx.80xx

I - Modular SSR installed as a group (without gap)
II - Modular SSR installed as a group (20 mm gap between each SSR)
III - Modular SSR installed individually in free air, or with a gap $\geq 40 \mathrm{~mm}$, which implies a not significant influence from nearby components
L77-9 Output RMS current v ambient temperature 77.45.x.xxx.8x50

1 - Installation on 0.77 .55 heat-sink ($0.9 \mathrm{~K} / \mathrm{W}$)
2 - Installation individually in free-air

Output specification
L77-3 Inrush peak current (AC) v inrush time 77.01.x.xxx.80xx

L77-5 Inrush peak current (AC) vinrush time 77.31.x.xxx.80xx

L77-7 Inrush peak current (AC) v inrush time 77.11.x.xxx.82xx

L77-1 1 Inrush peak current (AC) vinrush time 77x5.x.xxx.8x50

1-"Cold" conditions (ambient temperature $=23^{\circ} \mathrm{C}$, no output current during the last 15 minutes)
2 - "Hot" conditions (ambient temperature $=50^{\circ} \mathrm{C}$, rated output current)

Max recommended switching frequency (Cycles/Hour, with 50 \% Duty-cycle)						
Load	77.01	77.11	77.31	77.25	77.45	77.55
$5 \mathrm{~A} 230 \mathrm{~V}(\mathrm{ACl})$	5,000	-	-	-	-	-
1A (AC15)	10,000	-	-	-	-	-
0.5 A (AC15)	20,000	-	-	-	-	-
$15 \mathrm{~A} 305 \mathrm{~V} \cos \varphi=0.8$	-	1,800	-	-	-	-
$15 \mathrm{~A} 305 \mathrm{~V} \cos \varphi=0.5$	-	1,200	-	-	-	-
$30 \mathrm{~A} 480 \mathrm{~V} \cos \varphi=0.8$	-	-	1,800	-	-	-
$30 \mathrm{~A} 480 \mathrm{~V} \cos \varphi=0.5$	-	-	1,200	-	-	-
$25 \mathrm{~A} 230 \mathrm{~V} \cos \varphi=0.7$	-	-	-	1,800	-	-
$40 \mathrm{~A} 230 \mathrm{~V} \cos \varphi=0.7$	-	-	-	-	1,800	-
$50 \mathrm{~A} 230 \mathrm{~V} \cos \varphi=0.7$	-	-	-	-	-	1,800
Other data						
	77.01	77.11	77.31	77.25	77.45	77.55
Critical rising voltage $\mathrm{dv} / \mathrm{dt}$ without input control (gate open) @ $\mathrm{T}_{\mathrm{i}}=125^{\circ} \mathrm{C}$	> 1,000 V/ $\mu \mathrm{s}$	$\begin{gathered} >500 \mathrm{~V} / \mu \mathrm{s} \\ >10 \mathrm{~V} / \mu \mathrm{s} \\ (\mathrm{with} \mathrm{di} / \mathrm{dt}= \\ 20 \mathrm{~A} / \mathrm{ms} \text {) } \end{gathered}$	> 1,000 V/ $\mu \mathrm{s}$	$\begin{aligned} & 300 \mathrm{~V} / \mathrm{\mu s}(. .8250) \\ & 500 \mathrm{~V} / \mathrm{\mu s}(. .8650) \end{aligned}$	$\begin{aligned} & 500 \mathrm{~V} / \mathrm{\mu s}(. .8250) \\ & 1,000 \mathrm{~V} / \mathrm{\mu s}(. .8650) \end{aligned}$	$\begin{aligned} & 1,000 \mathrm{~V} / \mathrm{ps}(. .8250) \\ & 1,000 \mathrm{~V} / \mathrm{\mu s}(. .8650) \end{aligned}$
Critical rising current $\mathrm{di} / \mathrm{dt}$ @ $T_{i}=125^{\circ} \mathrm{C}$	$>50 \mathrm{~A} / \mu \mathrm{s}$	$>50 \mathrm{~A} / \mu \mathrm{s}$	> $150 \mathrm{~A} / \mu \mathrm{s}$	-	-	${ }^{-}$
${ }^{2}{ }^{2}$ for fusing @ $\dagger \mathrm{p}=10 \mathrm{~ms}$	$450 \mathrm{~A}^{2} \mathrm{~s}$	1,000 A2s*	1,350 A2s**	$450 \mathrm{~A}^{2} \mathrm{~s}$	1,250 $\mathrm{A}^{2} \mathrm{~s}$	1,350 $\mathrm{A}^{2} \mathrm{~s}$
Suggested fuse (depending on application) for short-circuit protection (Ultra-Fast acting types for semiconductors): $\text { * } 20 \mathrm{~A}, 660 \mathrm{~V} \mathrm{AC}, 10 \times 38 \mathrm{~mm}, 200 \mathrm{kA}, 360 \mathrm{~A}^{2} \mathrm{~s} \text {. }$ ** $30 \mathrm{~A}, 660 \mathrm{~V} \mathrm{AC}, 10 \times 38 \mathrm{~mm}, 200 \mathrm{kA}, 1,000 \mathrm{~A}^{2} \mathrm{~s}$.						

Wiring diagrams

Single-phase connection (77.01)

Single-phase connection (77.11)

Single-phase connection (77.x5)

Single-phase connection (77.31.....7x)

Example of three-phase connection (with $3 \times 77.01 .8 .230 .8051$)

Note: this connection can be used with all 77 series types, with the exception of 77.01 .8 .230 .8050 .

Outline drawings

D
77.x5

Screw terminal (plate clamp)

Accessories

022.09

Adaptor for panel mounting, plastic, 17.5 mm wide for 77.01 only 020.01
77.11/31

Screw terminal

$$
\text { Separator for rail mounting, plastic, } 9 \mathrm{~mm} \text { wide }
$$

Accessories

077.25

077.55

Heat-sink, anodized aluminium, $0.9 \mathrm{~K} / \mathrm{W}, 111 \times 100 \mathrm{~mm}$, for 77.45 and $77.55 \mid 077.55$

- Both the SSR and 35 mm rail clip mount to the heat-sink using M4 screws (supplied with heat-sink)
- Before assembling to the heat-sink, it is necessary to apply a thin and even layer of thermal conductive paste (not supplied) to the lower metal surface of the SSR

077.55 with $77.45 / 55$

Features

Electronic voltage monitoring relays for single and three-phase applications

- Multifunctional types, providing the flexibility of monitoring Undervoltage, Overvoltage, Window Mode, Phase rotation, Phase loss
- Positive safety logic - Make output contact opens if the relay detects an error
- All functions and values can be easily adjusted by the selector and trimmer on front face
- "Blade + cross" - both flat blade and cross head screw drivers can be used to adjust the regulators and the function selector
- Colored LEDs for clear \& immediate visual indication
- 1 CO relay output, 6 or 10 A
- Modular housing, 17.5 or 35 mm wide
- 35 mm rail (EN 60715) mount
- Cd-free contact material

70.11

Single-phase (220... 240 V) voltage monitoring:

- Undervoltage
- Overvoltage
- Window mode (overvoltage
+ undervoltage)
- Voltage fault memory selectable

Three-phase (380... 415 V)
voltage monitoring:

- Undervoltage
- Overvoltage
- Window mode (overvoltage
+ undervoltage)
- Voltage fault memory
selectable
- Phase loss
- Phase rotation

For outline drawing see page 10

Contact specification		
Contact configuration	1 CO (SPDT)	1 CO (SPDT)
Rated current/Maximum peak current A	10/30	6/10
Rated voltage/Max. switching voltage V AC	250 / 400	250 / 400
Rated load AC1 VA	2,500	1,500
Rated load AC15 VA	750	500
Single phase motor rating (230 V AC) kW	0.5	0.185
Breaking capacity DC $1: 30 / 110 / 220 \mathrm{~V}$ A	10/0.3/0.12	6/0.2/0.12
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (5 / 5)	500 (12 / 10)
Standard contact material	AgNi	AgNi
Supply specification		
Nominal system voltage ($U_{\text {N }}$) V AC $(50 / 60 \mathrm{~Hz})$	220... 240	380... 415
Rated power VA (50 Hz) / W	2.6 / 0.8	$11 / 0.9$
Operating range V AC ($50 / 60 \mathrm{~Hz}$)	130... 280	220... 510
Technical data		
Electrical life at rated load AC1 cycles	$80 \cdot 10^{3}$	$60 \cdot 10^{3}$
Voltage detection level range V	170... 270	300... 480
Asymmetry detection level range \%	-	-
Switch-off delay time (T on function diagrams) s	0.5... 60	0.5... 60
Switch-on lock-out time s	0.5	1
Switch-on hysteresis (H on function diagrams) V	5 (L-N)	10 (L-L)
Power-on activation time s	≈ 1	≈ 1
Insulation between supply and contacts (1.2/50 $\mu \mathrm{s}) \mathrm{kV}$	4	4
Dielectric strength between open contacts V AC	1,000	1,000
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-20 \ldots+60$	$-20 \ldots+60$
Protection category	IP20	IP20
Approvals (according to type)	CE PG EHL	

Features

Electronic voltage monitoring relays for three-phase applications

- Multifunctional types, providing the flexibility of monitoring Undervoltage, Overvoltage, Window Mode, Phase rotation, Phase loss, Asymmetry and Neutral loss
- Positive safety logic - Make output contact opens if the relay detects an error
- All functions and values can be easily adjusted by the selector and trimmer on front face
- "Blade + cross" - both flat blade and cross head screw drivers can be used to adjust the regulators and the function selector
- Colored LEDs for clear \& immediate visual indication
- 1 or 2 CO relay output, 6 or 8 A
- Modular housing, 35 mm wide
- 35 mm rail (EN 60715) mount
- Cd-free contact material

Screw terminal

For outline drawing see page 10
Contact specification
Contact configuration

Three-phase (380... 415 V , with or without neutral) voltage monitoring:

- Window mode (overvoltage
+ undervoltage)
- Phase loss
- Phase rotation
- Asymmetry
- Neutral loss selectable

Three-phase (380... 415 V , with neutral) voltage monitoring:

- Undervoltage
- Overvoltage
- Window mode (overvoltage + undervoltage)
- Voltage fault memory selectable
- Phase loss
- Phase rotation
- Asymmetry
- Neutral loss

Ordering information

Example: 70 series, three-phase voltage monitoring relay, 1 output, supply voltage $380 \ldots 415 \mathrm{~V}$ AC.

Monitoring and function overview

	70.11	70.31	70.41	70.42	70.61/62
Supply system type	Single phase system	3 -phase systems	3-phase systems	3-phase systems	3 -phase systems
Nominal voltage $50 / 60 \mathrm{~Hz}$ V	220... 240	380... 415	380... 415	380... 415	208... 480
Undervoltage with/without memory (selectable)	-	-	-	-	-
Overvoltage with/without memory (selectable)	-	-	-	-	-
Window Mode with/without memory (selectable)	-	-	-	-	-
Window Mode without memory	-	-	-	-	-
Phase loss	-	-	-	-	\bullet
Phase rotation	-	-	\bullet	-	\bullet
Phase asymmetry	-	-	-	-	-
Neutral loss (selectable)	-	-	-	- (fixed)	-

Technical data

Insulation			70.11/31/41/42	70.61/62	
Between supply and contacts	dielectric strength	V AC	2,500	3,000	
	impulse (1.2/50 $\mu \mathrm{s}$)	kV	4	5	
Between open contacts	dielectric strength	V AC	1,000	1,000	
	impulse (1.2/50 s)	kV	1.5	1.5	
EMC specifications					
Type of test			Reference standard		
Electrostatic discharge	contact discharge		EN 61000-4-2	4 kV	
	air discharge		EN 61000-4-2	8 kV	
Radiated electromagnetic field	$80 \ldots 1,000 \mathrm{MHz}$		EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$	
	$1 \ldots 2.8 \mathrm{GHz}$		EN 61000-4-3	$5 \mathrm{~V} / \mathrm{m}$	
Fast transients (burst $5 / 50 \mathrm{~ns}, 5$ and 100 kHz)	on supply terminals		EN 61000-4-4	4 kV	
Voltage pulses on supply	common mode		EN 61000-4-5	4 kV	
terminals (surge 1.2/50 μ s)	differential mode		EN 61000-4-5	4 kV	
Radiofrequency common mode voltage (0.15 ... 230 MHz)	on supply terminals		EN 61000-4-6	10 V	
Voltage dips	$70 \% U_{N}$		EN 61000-4-11	25 cycles	
Short interruptions			EN 61000-4-11	1 cycle	
Radiofrequency conducted emissions	0.15... 30 MHz		CISPR 11	class B	
Radiated emissions	$30 . .1,000 \mathrm{MHz}$		CISPR 11	class B	
Terminals			solid cable	stranded cable	
Max. wire size		mm^{2}	$1 \times 6 / 2 \times 4$	$1 \times 4 / 2 \times 2.5$	
		AWG	$1 \times 10 / 2 \times 12$	$1 \times 12 / 2 \times 14$	
(2tㅏ) Screw torque		Nm	0.8		
Wire strip length		mm	9		
Other data			70.11	70.31/41	70.42/61/62
Power lost to the environment	without output current	W	0.8	0.9	1
	with rated output current	W	2	1.2	1.4

Functions

Output relay On (NO closed) when all OK: positive logic.

Type
70.11

70.31 Onervoltage (OV and OVm functions)

Functions

Output relay On (NO closed) when all OK: positive logic.

Front view: function selector and regulators

SERIES

LED indication

Monitoring relay Type	LED	Supply system normal	Supply system abnormal (Voltage out of limits, switch-off delay time T running)	Supply system abnormal (Reason for switch-off, RESET necessary when "with Memory"* is selected)	
		Contact 11-14 closed	Contact 11-14 closed	Contact 11-14 open	
70.11.8.230.2022			\|l	IIIIIII	Overvoltage OV and OVm Undervoltage UV and UVm
70.31.8.400.2022			\|l	IIIIIII	Overvoltage OV and OVm Undervoltage UV and UVm Phase loss Phase rotation
70.41.8.400.2030				Overvoltage OV Undervoltage UV Asymmetry	
70.42.8.400.2032			\\|\|\|\|\|\|\|	Overvoltage OV and OVm Undervoltage UV and UVm Asymmetry Phase loss Neutral loss Phase rotation	
70.61.8.400.0000	-			Phase rotation or Phase loss	
70.62.8.400.0000	-			-	

[^13]
Wiring diagrams

Application example

The output contact switches the coil of the line contactor.

Outline drawings
70.11

Screw terminal

70.41

Screw terminal
\square

70.61

Screw terminal

70.31

Screw termina

70.42

Screw terminal

70.62

Screw terminal

Accessories

020.01

011.01

Sheet of marker tags, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$ for $70.11,70.31,70.41,70.42$ and $70.62 \mid 060.72$

Adaptor for panel mounting, plastic, 17.5 mm wide for 70.11 and 70.61
020.01

Adaptor for panel mounting, plastic, 35 mm wide for $70.31,70.42$ and 70.41

060.72

Sheet of marker tags, plastic, 24 tags, $9 \times 17 \mathrm{~mm}$ for 70.61
020.24
020.24

Identification tag, plastic, 1 tag, $17 \times 25.5 \mathrm{~mm}$ for $70.11,70.31,70.42$ and 70.41

022.09

Separator for rail mounting, plastic, 9 mm wide

Features

1 - Phase 230 V

Over \& Under voltage monitoring relays
71.11.8.230.0010

- Fixed Over \& Under voltage detection - Link selectable 5 or 10 minute lock-out delay
71.11.8.230.1010
- Adjustable Over \& Under voltage detection Switch selectable 5 or 10 minute lock-out delay
- 35 mm rail (EN 60715) mounting
- LED indication
- Positive safery logic (healthy conditions output relay energised)

Contact specification
Contact configuration
Rated current/Maximum peak current A

Rated voltage/Maximum switching voltage V AC
Rated load AC1 VA

Rated load AC15 (230 V AC)	VA
Single phase motor rating (230 V AC)	kW

Breaking capacity DC1: 30/110/220 V A

Minimum switching load	mW
Standard contact material	

Supply specification
Nominal voltage $\left(U_{N}\right) \quad \operatorname{VAC}(50 / 60 \mathrm{~Hz})$

	V DC
Rated power AC/DC	VA $(50 \mathrm{~Hz}) / \mathrm{W}$

Operating range	$A C$

Technical data

Electrical life at rated load $\mathrm{ACl} \quad$ cycles	
Detection levels	
Switch-on lock-out time/reaction time	

71.11.8.230.0010

- Fixed - Over/Under voltage limits,
(0.75...1.2) U_{N} respectivity
- Link selectable - 5 min or 10 min delay
71.11.8.230.1010

- Adjustable - symmetrical Over/Under voltage limits adjustable between $\pm 5 \%$ to $\pm 20 \% U_{N}$ - Switch selectable - 5 min or 10 min delay
- Detects and trips on out-of-limits L-N voltage, and protects against excessive "starts/hour" through "power-on" and "lock-out" time delays.
- Typical applications - protection of compressor motors and high pressure discharge lamp circuitry.

71 Series - Moniłoring relays 10 A

Features

3 - Phase 400 V
Over \& Under voltage monitoring relay
71.31.8.400.1010

- Adjustable Over \& Under voltage detection - Switch selectable 5 or 10 minute lock-out delay
- 35 mm rail (EN 60715) mounting
- LED indication
- Positive safety logic (healthy conditions output relay energised)
71.31.8.400.1010

- Adjustable - symmetrical Over/Under voltage limits adjustable between $\pm 5 \%$ to $\pm 20 \% \mathrm{U}_{\mathrm{N}}$
- Switch selectable -5 min or 10 min delay
- Delects and trips on out-of-limits L-L voltage, and protects against excessive "starts/hour" through "power-on" and "lock-out" time delays. - Typical applications - protection of compressor motors and high pressure discharge lamp circuitry.

Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load AC1 VA

Rated load AC 15 (230 V AC)	VA
Single phase motor rating (230 V AC)	kW

Breaking capacity DC1: 30/110/220 V A
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact mate
Supply specification

Nominal voltage (U_{N}) V AC (50/60 Hz)	400
V DC	-
Rated power AC/DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$	4/-
Operating range AC	$(0.8 \ldots 1.2) \mathrm{U}_{\mathrm{N}}$
DC	-
Technical data	
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$
Detection levels V (50/60 Hz)	Adjustable ($\pm 5 \ldots \pm 20) \% \mathrm{U}_{\mathrm{N}}$
Switch-on lock-out time/reaction time	(5 or 10) min / < 0.5 s
Fault memory	-
Electrical isolation: Supply to Measuring circuits	None - circuits are electrically common
Ambient temperature range ${ }^{\circ} \mathrm{C}$	-20...+55
Protection category	IP 20
Approvals (according to type)	CE PG EHL

Features

3 - Phase 400 V - Line monitoring relays 71.31.8.400.1021

- Over \& Under voltage trip on-delay

Fault memory
71.31.8.400.2000

Phase asymmetry
Phase rotation
Phase loss

- 35 mm rail (EN 60715) mounting
- LED indication
- Positive safety logic (healthy conditions output relay energised)

Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC

Rated load AC 1	VA
Rated load AC15 (230 V AC)	VA

Single phase motor rating (230 V AC) kW
Breaking capacity DC $1: 30 / 110 / 220 \mathrm{~V} \quad \mathrm{~A}$
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Standard contact mate
Supply specification

Nominal voltage (U_{N}) V AC (50/60 Hz)	400	400
V DC	-	-
Rated power AC/DC VA (50 Hz)/W	4/ -	4/-
Operating range AC	$(0.8 \ldots 1.15) \mathrm{U}_{\mathrm{N}}$	$(0.8 \ldots 1.15) U_{N}$
DC	-	-
Technical data		
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Detection level $\quad \mathrm{U}_{\text {min }} / \mathrm{U}_{\text {max }} /$ Asymmetry	(0.8 ...0.95) $\mathrm{U}_{\mathrm{N}} / 1.15 \mathrm{U}_{\mathrm{N}} /-$	$0.8 U_{N} / 1.11 U_{N} /(-5 \ldots-20) \% U_{N}$
Trip on-delay/reaction time	(0.1...12)s $/<0.5 \mathrm{~s}$	$-/<0.5 \mathrm{~s}$
Fault memory - selectable	Yes	-
Electrical isolation: Supply to Measuring circuits	None - circuits are electrically common	None - circuits are electrically common
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-20 \ldots+55$	$-20 \ldots+55$
Protection category	IP 20	IP 20
Approvals (according to type)	CE PG EH[

71.31.8.400.1021

- 3 phase 400 V - line voltage monitoring - Detects over and under voltage - Adjustable trip on-delay
- Switch selectable fault memory
- Under voltage trip level (0.8...0.95) U_{N} Adjustable
- Over voltage trip level $1.15 \mathrm{U}_{\mathrm{N}}$ - Fixed
- Trip delay time (0.1 ...12) s adjustable
- Fault memory, switch selectable
- Fault acknowledgement by switch manipulation from ON to OFF and back to ON or power down

71.31.8.400.2000

- 3 phase asymmetry monitoring
- Phase rotation monitoring
- Phase loss monitoring
- Asymmetry between phases $(-5 \ldots-20) \% U_{N}$ adjustable
- Detection of the supply voltage U to A1 (1) and/or A2 (5) > $1.11 \mathrm{U}_{\mathrm{N}}$

U= 400 V AC 3~ ($50 / 60 \mathrm{~Hz}$)

Features

Universal voltage or current detecting and monitoring relay
71.41.8.230.1021 - Voltage monitoring 71.51.8.230.1021 - Current monitoring

- Zero voltage memory according to EN 60204-7-5
- Programmable for DC or AC detection level: range detecting: upper and lower value upper set point minus hysteresis range (5...50)\% for switch on lower set point plus hysteresis range (5...50)\% for switch on
- Fault memory
- Electrical isolation between measuring and supply circuits
- Immune to supply interruptions of < 200 ms
- Wide detecting range:
- voltage: DC (15...700)V, AC (15...480)V
- 35 mm rail (EN 60715) mounting

Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltageV AC

Rated load AC1	VA
Rated load AC15 (230 V AC)	VA

Single phase motor rating (230 V AC) kW
Breaking capacity DC1:30/110/220 V A
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact mat
Supply specification

Nominal voltage $\left(U_{N}\right)$	V VAC $(50 / 60 \mathrm{~Hz})$
Rated power AC/DC	VA $(50 \mathrm{~Hz}) / W$
Operating range	AC

Technical data

Electrical life at rated load AC1 cycles
Detection levels $\quad \mathrm{AC}(50 / 60 \mathrm{~Hz}) / D C$
Switch-off/reaction/Start delay
Switch-on level of the detecting level \%

Fault memory - programmable
Electrical isolation: Supply to Measuring circuits

Ambient temperature range ${ }^{\circ} \mathrm{C}$
Protection category
Approvals (according to type)
${ }^{\circ} \mathrm{C}$
71.41.8.230.1021

- Programmable universal voltage monitoring relay
- AC/DC voltage detection-adjustable
- AC ($50 / 60 \mathrm{~Hz}$) (15...480)V
- DC (15...700)V
- Switch-on hysteresis (5...50)\%
- Switch-off delay (0.1...12)s

71.51.8.230.1021

- Programmable universal current monitoring relay - Usable with current transformer 50/5, 100/5, $150 / 5,250 / 5,300 / 5,400 / 5$ or $600 / 5$
- AC/DC current detection - adjustable
- AC $(50 / 60 \mathrm{~Hz})(0.1 \ldots 10) \mathrm{A}$ with current transformer to 600A
- DC (0.1...10)A
- Switch-on hysteresis (5...50)\%
- Switch-off delay (0.1...12)s
- Start delay (0.1 ...20)s

$\mathrm{U}=230 \mathrm{~V} \mathrm{AC}$
$(50 / 60 \mathrm{~Hz})$
programmabl I AC: (0.1...10) A
—600 A DC: $(0.1 \ldots 10) \mathrm{A}$

40.1 s 0.1 s T1 T2

1 CO (SPDT)
10/15
250/400
2,500
500
0.5

10/0.3/0.12
300 (5/5)
AgCdO 230

4/-
$(0.85 \ldots 1.15) U_{N}$
$100 \cdot 10^{3}$
(0.1...10)A at transducer to 600A / (0.1...10)A ($0.1 \ldots$ 12)s $/<0.35 \mathrm{~s} /(0.1 \ldots 20$) s
5... 50
5... 50
$5 .$.
Y
Y
C

$100 \cdot 10^{3}$
$(15 \ldots 480) \mathrm{V} /(15 \ldots 700) \mathrm{V}$
$(0.1 \ldots 12) \mathrm{s} /<0.35 \mathrm{~s} /<0.5 \mathrm{~s}$

Features

Thermistor temperature sensing relays for industrial applications
71.91-1 Pole, without fault memory
71.92-2 Pole, with fault memory

- Overload protection according EN 60204-7-3
- Positive safety logic - make contact opens if the measured value is outside of the acceptable range
- Industry standard module
- LED status indication
- 35 mm rail (EN 60715) mounting

71.91

71.92

Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load AC1

Rated load AC15 (230 V AC)	VA
Single phase motor rating (230 V AC)	kW

Breaking capacity DC1:30/110/220 V A
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Standard contact material	
Supply specification	

Nominal voltage $\left(U_{N}\right)$	V AC $(50 / 60 \mathrm{~Hz})$
	$\mathrm{V} \mathrm{AC/DC}$
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC

Technical data
Electrical life at rated load AC1 cycles

PTC detecting: Short circuit/Temperature OK
71.91.x.xxx. 0300

- Thermistor relay
- 1 Pole normally open contact
- $24 \mathrm{~V} \mathrm{AC/DC}$, or 230 V AC supply
- Temperature detection with PTC
- PTC short circuit detection
- PTC wire breakage detection
71.92.x.xxx. 0001

- Thermistor relay with fault memory
- 2 Pole changeover contacts
- 24 V AC/DC, or 230 V AC supply
- Temperature detection with PTC
- Fault memory - switch selectable
- Reset by Reset button or supply interruption
- PTC short circuit detection
- PTC wire breakage detection

L(+
N (-)

A1

Ordering information

Example: Universal voltage monitoring relay with LCD display for AC/DC voltage detection, 1 CO (SPDT) contact rated 10 A 250, supply voltage 230 V , programmable delay time and fault memory.
Series

Type

$1=1$ phase AC line monitoring
$3=3$ phase AC line monitoring
$4=A C / D C$ universal- Voltage detection
$5=\mathrm{AC} / \mathrm{DC}$ universal- Current detection
9 = Thermistor relay (temperature monitoring with PTC thermistor)
No. of poles
$1=1 \mathrm{CO}$ (SPDT) types $71.11,31,41,51$
$1=1 \mathrm{NO}$ (SPST-NO) type 71.91
2 = 2 CO (DPDT) type 71.92
Supply version
$0=A C(50 / 60 H z) / D C$
$8=A C(50 / 60 \mathrm{~Hz})$
Supply voltage
$024=24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
$230=230 \mathrm{~V}$
$400=400 \mathrm{~V}$

Additional functions

$0=$ Basic function
1 = Adjustable detection value
2 = Adjustable: Asymmetry, phase loss, phase rotation

Technical data

Functions

Monitoring relay	Types												Times			Supply voltage			Module width		Contact conf.
											$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{0}{3} \\ & \frac{.0}{9} \end{aligned}$			Delay time (0.1 ...12)s adjustable		$\begin{aligned} & U \\ & \dot{U} \\ & \dot{甘} \\ & \underset{\sim}{~} \end{aligned}$	$\begin{aligned} & \text { U } \\ & > \\ & \hline \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { U } \\ & > \\ & \text { O} \\ & \text { O} \end{aligned}$	$\begin{aligned} & \stackrel{0}{9} \\ & \frac{0}{3} \\ & E \\ & E \\ & N \end{aligned}$	$\begin{aligned} & \frac{0}{.0} \\ & \dot{3} \\ & \varepsilon \\ & \varepsilon \\ & n \\ & \underset{N}{\dot{N}} \end{aligned}$	
71.11.8.230.0010	-												-				-		-		$\begin{aligned} & 1 \mathrm{CO} \\ & \text { SPDT } \end{aligned}$
71.11.8.230.1010	-										-		-				\bullet		-		$\begin{aligned} & 1 \text { CO } \\ & \text { SPDT } \end{aligned}$
71.31.8.400.1010		-									-		-					-	-		$\begin{aligned} & 1 \text { CO } \\ & \text { SPDT } \end{aligned}$
71.31.8.400.1021		\bullet									-	-		-				-	-		$\begin{aligned} & 1 \text { CO } \\ & \text { SPDT } \end{aligned}$
71.31.8.400.2000			\bullet	-	-						-							-	\bullet		$\begin{aligned} & 1 \text { CO } \\ & \text { SPDT } \end{aligned}$
71.41.8.230.1021	-					\bullet	-				-	-		-			-		-		$\begin{aligned} & 1 \mathrm{CO} \\ & \text { SPDT } \end{aligned}$
71.51.8.230.1021								-	\bullet		-	-		-	-		\bullet		-		$\begin{aligned} & 1 \text { CO } \\ & \text { SPDT } \end{aligned}$
71.91.0.024.0300										-	\bullet					-				\bullet	$1 \text { NO }$ SPST-NO
71.91.8.230.0300										\bullet	-						-			-	$\begin{gathered} 1 \text { NO } \\ \text { SPST-NO } \end{gathered}$
71.92.0.024.0001										-	-	-				-				-	$\begin{aligned} & 2 \text { CO } \\ & \text { DPDT } \end{aligned}$
71.92.8.230.0001										-	-	-					-			-	2 CO DPDT
Current transformer		ce as	equir																		

Explanation of relay marking and LED/LCD display

Monitoring relay without LCD-display

ON	LED green steady light: supply voltage is on and measuring system is active.
DEF	Default: the detected value is outside of the acceptable range (asymmetric is shown by the LED ASY). LED red flashing: delay time is running, see the function diagram. LED red steady light: output relay is off, contact $11-14(6-2)$ is open.
ASY	Phase asymmtery is outside of the predefined range. LED steady light: output relay is turned off, contact $11-14(6-2)$ is open.
LEVEL	Selected range as \% value.
TIME	Delay time min (minutes) or s (seconds).
MEMORY ON	Fault memory switched on: the state of the output relay after the accurrence of a fault -contact $11-14(6-2)$ open- will be maintained, monitored value returns to within acceptable limits. Fault reset is made by switch manipulation from ON to OFF to ON, or by power down (71.31.8.400.1021 \& $71.92 . x . x x x .0001)$, or by operating of the "RESET" $171.92 . x . x x x .0001)$.
MEMORY OFF	Fault memory turned off: the sate of the output contatcts will only remain in the "fault" condition -contact $11-41(6-2)$ open- while the monitored value is outside of the acceptable limits. When the monitored value returns within the acceptable limits the contact will revert to the energised state. Monitored equipment will start again automatically.

Monitoring	CD-display
SET/RESET	Relay 71.41 and 71.51 . Sets and resets the programmable values -see operating in the packing.
SELECT	Relay 71.41 and 71.51. Selects

| Short programmin | |
| :--- | :--- | :--- | :--- | :--- |
| instruction | After repeatedly pressing the "SET/RESET" button the measured value will be displayed, or " 0 " appears if nothing is |
| connected to Zl and $\mathrm{Z2}$ (5 and 9). If the programming is brocken off before "end" is shown in the display the previous | |
| program will remain unchanged after an interruption of the supply voltage. | |

LED/LCD status announcement/advice

Type	Starting mode	Normal operation	Abnormal mode		Reset
71.11.8.230.0010 71.11.8.230.1010 71.31.8.400.1010		\square Normal operation Set point is OK 11-14 is closed	\square Time T runs Set point is immaterial $11-14$ is open Will close after T , if set point is OK		
71.31.8.400.1021 Memory OFF		\square Normal operation Set point is OK 11-14 is closed	Time T runs, Set point is not OK 11-14 is closed	\square After expiry of T Set point is not OK 11-14 is open Will close, if set point is OK	
71.31.8.400.1021 Memory ON		\square Normal operation Set point is OK $11-14$ is closed	Time T runs, Set point is not OK 11-14 is closed	\square After expiry of T Set point is not OK 11-14 is open Will not close at RESET	\square After expiry of T Set point is OK 11-14 is open Will close at RESET
71.31.8.400.2000		Normal operation Set point is OK 11-14 is closed	\square Supply voltage to A1 (1) and / or A2(5) is missing 11-14 is open, Will close if supply voltage restored and set point OK \square Incorrect phase \square rotation or phase failure or voltage Al (1) and/ot A2(5) is $>1.11 \mathrm{U}_{\mathrm{N}}$ 11-14 is open Will close, if set point is OK	\square Phase asymmetry $11-14$ is open Will close, if set point is OK	
71.41.8.230.1021 Memory OFF		Measured value displayed \square Normal operation Set point is OK 11-14 is closed	Measured value displayed Time T runs, Set point is not OK 11-14 is closed	Measured value displayed After expiry of T Set point is not OK 11-14 is open Will close, if set point is OK	
$\begin{aligned} & \text { 71.41.8.230.1021 } \\ & \text { Memory ON } \end{aligned}$		Measured value displayed \square Normal operation Set point is OK 11-14 is closed	Measured value displayed Time T runs, Set point is not OK 11-14 is closed	M in the display flashes Measured value displayed Affer expiry of T Set point is not OK 11-14 is open Will not close at RESET	M in the display - static Measured value displayed After expiry of T Set point is OK 11 -14 is open Will close at RESET
$\begin{aligned} & \text { 71.51.8.230.1021 } \\ & \text { Memory OFF } \end{aligned}$	Measured value displayed \square Time T2 runs, Set point immaterial 11-14 is closed	Measured value displayed \square Normal operation Set point is OK 11-14 is closed	Measured value displayed Time T runs, Set point is not OK 11-14 is closed	Measured value displayed After expiry of T Set point is not OK 11-14 is open Will close, if set point is OK	
$\begin{aligned} & \text { 71.51.8.230.1021 } \\ & \text { Memory ON } \end{aligned}$	Measured value displayed \square Time T2 runs, Set point immaterial 11-14 is closed	Measured value displayed \square Normal operation Set point is OK $11-14$ is closed	Measured value displayed	M in the display flashes Measured value displayed \square Affer expiry of T Set point is not OK 11-14 is open Will not close at RESET	M in the display - static Measured value displayed After expiry of T Set point is OK $11-14$ is open Will close at RESET
71.91.x.xxx. 0300		\square Normal operation Set point is OK 11-14 is closed	Temperature to high or PTC line break or PTC short circuit 11-14 is open Will close, if set point is OK		
$\begin{aligned} & \text { 71.92.x.xxx. } 0001 \\ & \text { Memory OFF } \end{aligned}$		\square Normal operation Set point is OK 11-14 is closed	\square Temperature to high or PTC line break or PTC short circuit 11-14 is open Will close, if set point is OK		
71.92.x.xxx. 0001 Memory ON		Normal operation Set point is OK 11-14 is closed	\square Temperature to high or PTC line break or PTC short circuit 11-14 is open		

Functions

Functions

Functions

Functions

72 Series - Monitoring relays

Features

Priority change relay Special relay for alternating loads, for applications with pumps, compressors, air conditioning or refrigeration units

- 2 independent NO output, 12 A
- 4 functions
- 2 independent control signals, insulated from supply
- $110 . . .240 \mathrm{~V}$ and 24 V AC/DC supply versions
- Modular housing, 35 mm wide
- 35 mm rail (EN 60715) mount
- Cd-free contact material
72.42

Screw terminal

72.42

- Multi-function (MI, ME, M2, M1)

2 NO (2 DPST-NO)
$12 / 20$
$250 / 400$
3,000
1,000
$12 / 0.3 / 0.12$
Breaking capacity DC1: 30/110/220 V A

Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (5/5)	
Standard contact material	AgNi	
Supply specification		
Nominal voltage (U_{N}) V AC ($50 / 60 \mathrm{~Hz}$) / DC	24	110... 240
Rated power in stand-by W	0.12	0.18
with 2 active relays $\mathrm{W} / \mathrm{VA}(50 \mathrm{~Hz})$	1.1 / 1.7	1.5 / 3.9
Operating range \quad V AC ($50 / 60 \mathrm{~Hz}$)	16.8...28.8	90... 264
V DC	16.8... 32	90... 264
Technical data		
Electrical life at rated load AC1 cycles	100×10^{3}	
Output delay time (T on function diagrams) s	0.2... 20	
Power-on activation time	≤ 0.7	
Minimum impulse duration ms	50	
Insulation between supply and contacts (1.2/50 $\mathrm{\mu s}$) kV	6	
Dielectric strength between open contacts V AC	1,000	
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$	
Protection category	IP20	
Approvals (according to type)	C E HH PG	

Ordering information

Example: 72 series level control relay, adjustable sensitivity range, (230...240)V AC supply voltage.

All versions

72.01.8.024.0000
72.01.8.024.0002*
72.01.8.125.0000
72.01.8.240.0000
72.01.8.240.0002*
72.01.8.240.5002**
72.01.8.400.0000
72.01.9.024.0000
72.11.8.024.0000
72.11.8.125.0000
72.11.8.240.0000
72.11.9.024.0000
72.42.0.230.0000
72.42.0.024.0000

* For liquids conductivity up to 2μ Siemens or a Resistance of $450 \mathrm{k} \Omega$
** For applications with output contact loading down to 5 V 1 mA

Technical data

Insulation				72.01/72.11	72.42
Insulation			Dielectric strength$4,000 \vee \mathrm{AC}$	Impulse (1.2/50 $\mathrm{\mu s}$)	
between supply and contacts				6 kV	6 kV
between supply and control (for 110...240 V version only)			2,500 V AC	-	4 kV
between electrodes, Z1-Z2 and supply*			4,000 V AC	6 kV	-
between contacts and electrodes			4,000 V AC	6 kV	-
between open contacts			1,000 V AC	1.5 kV	1.5 kV
EMC specifications					
Type of test			Reference standard	72.01/72.11	72.42
Electrostatic discharge	contact discharge		EN 61000-4-2	4 kV	4 kV
	air discharge		EN 61000-4-2	8 kV	8 kV
Radio-frequency electromagnetic field	(80...1,000 MHz)		EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$	$10 \mathrm{~V} / \mathrm{m}$
	($1 . . .2 .8 \mathrm{GHz}$)		EN 61000-4-3	-	$5 \mathrm{~V} / \mathrm{m}$
Fast transients (burst $5 / 50 \mathrm{~ns}, 5$ and 100 kHz)	on supply terminals		EN 61000-4-4	4 kV	4 kV
	on control terminals		EN 61000-4-4	-	4 kV
Voltage pulses on supply terminals (surge 1.2/50 $\mu \mathrm{s}$)	common mode		EN 61000-4-5	4 kV	4 kV
	differential mode		EN 61000-4-5	4 kV	4 kV
Radiofrequency common mode voltage ($0.15 \ldots 280 \mathrm{MHz}$)	on supply terminals		EN 61000-4-6	10 V	10 V (0.15...230 MHz)
	on control terminals		EN 61000-4-6	-	10 V
Voltage dips	$70 \% U_{N}$		EN 61000-4-11	-	25 cycles
Short interruptions			EN 61000-4-11	-	1 cycles
Radiofrequency conducted emissions	(0.15 .. 30 MHz)		CISPR 11	class B	class B
Radiated emissions	(30...1,000 MHz)		CISPR 11	class B	class B
Terminals					
(272) Screw torque		Nm	0.8		
Wire strip length		mm	9		
Max. wire size		mm^{2}	solid cable	stranded cable	
			$1 \times 6 / 2 \times 4$	$1 \times 4 / 2 \times 2.5$	
		AWG	$1 \times 10 / 2 \times 12$	$1 \times 12 / 2 \times 14$	
Other data					
Current absorption on Z1 and Z2 (type 72.11) mA			<1		
Current absorption on control signal (B1-B3 and B2-B3)			$5 \mathrm{~mA}, 5 \mathrm{~V}$		
Power lost to the environment			72.01/72.11	72.42	
	without contact current	W	1.5	0.9 (1 relay ON)	
	with rated current	W	3.2	3.0 (2 relays	
Max cable length between electrode and relay (types 72.01/72.11) m			200 (max. capacitance of $100 \mathrm{nF} / \mathrm{km}$)		

[^14]
Functions for 72.01 and 72.11

U = Supply voltage	LED	Supply voltage	NO output contact	Contacts	
B1 = Max level				Open	Closed
B2 = Min level		OFF	Open	11-14	11-12
B3 = Common		ON	Open	11-14	11-12
$\begin{aligned} & \overline{Z 1-Z 2}=\text { Contact 1 1-14 } \\ & \text { Link to select } \end{aligned}$		ON	Open (Timing in Progress)	11-14	11-12
(Type 72.11)		ON	Closed	11-12	11-14

Function and Run-on time

Type $\mathbf{7 2 . 0 1}$	Type $\mathbf{7 2 . 1 1}$
FL $=$ Level control by Filling, Long $(7 \mathrm{sec})$ run-on delay.	$\mathbf{F}=$ Level control by Filling, Z1-Z2 open. Run-on time fixed at 1 sec.
$\mathrm{FS}=$ Level control by Filling, Short $(0.5 \mathrm{sec})$ run-on delay.	$\mathbf{E}=$ Level control by Emptying, Z1-Z2 linked. Run-on time fixed at 1 sec.
$\mathrm{ES}=$ Level control by Emptying, Short $(0.5 \mathrm{sec})$ run-on delay.	
$\mathrm{EL}=$ Level control by Emptying, Long $(7 \mathrm{sec})$ run-on delay.	

Filling functions
Wiring diagram
Examples with 3 electrodes

Filling Control - between Min. and Max. levels.
Under normal operation the liquid level can be expected to cycle between the Minimum and the Maximum electrodes, B2 and B1 (plus a degree of over and under-shoot).

Switch On:

- On "power-up", if the liquid is below B1 the output relay will operate after time T has expired. - On the liquid level falling below B2, the output relay will operate after time T has expired.

Switch Off:

- On the liquid level reaching electrode B1, the output relay will de-energise after time T has expired.
- On "power-off", the output relay will immediately de-energise.

	Wiring diagram
Type 72.01	

Emptying functions
Wiring diagram

Examples with 3 electrodes

Applications for 72.01 and 72.11

FILLING function:
Examples with 3 electrodes and with a contactor connected to the contact.

EMPTYING function:
Examples with 3 electrodes and with a motor pump connected directly to the contact.

The 72 series level control relays work by measuring the resistance through the liquid, between the common (B3) electrode and Min. and Max. electrodes ($B 2$ and $B 1$). If the tank is metalic, then this can be substituted as the B3 electrode.
Take care to ensure that the liquid has a suitable resistivity - see below:

SUITABLE LIQUIDS

- City water
- Well water
- Rainwater
- Sea water
- Liquids with low-percentage alcohol
- Wine
- Milk, Beer, Coffee
- Sewage
- Liquids fertilizer

UN-SUITABLE LIQUIDS

- Demineralised water
- Fuels
- Oil
- Liquids with high-percentage alcohol
- Liquid gas
- Paraffins
- Ethylene glycol
- Paint

Functions for 72.42

A1-A2 = Supply voltage S1 (B1-B2) = Control signal 1	LED		
S2 (B3-B2) = Control signal 2		Device in stand-by, output not activated	
$\begin{aligned} -= & \text { Contact } 1(11-14) \text { and } \\ & \text { Contact } 2(21-24) \end{aligned}$		Output not activated, timing in progress	
LED 1 = Output 1	- I \\| \|	Output not activated (only functions M1/M2)	
LED 2 = Output 2		Output activated	

Wiring diagram

		(MI) Outputs alternate on successive applications of supply voltage - Application of the supply voltage to A1-A2 forces just one output contact to close, but the contact that closes will alternate between 11-14 and 21-24 on each successive application of the supply - ensuring even wear across both motors. - The other output contact can be forced closed by the closure of either S1 or S2-but to limit high current surges the other motor cannot start within T seconds of the first motor.
		(ME) Outputs alternate according to control signal - The supply voltage is permanently applied to A1-A2. When closed, S1 forces just one output contact to close. The contact that closes will alternate between 11-14 and 21-24 on each successive S1 closure ensuring even wear across both motors. - If closed, S 2 forces both output contacts to close (irrespective of S1). However, to limit high current surges, both motors cannot start within T seconds of each other.
		(M2) Output 2 (21-24) only - Supply permanently applied to A1-A2. - Closure of either S1 or S2 will close output contact 2 (21-24). Use when load 1 (11-14) is out of service.
		(M1) Output 1 (11-14) only - Supply permanently applied to A1-A2. - Closure of either S1 or S2 will close output contact 1 (11-14). Use when load 2 (21-24) is out of service.

MI function example

This shows the 72.42 Priority change relay working in conjunction with a single 72.01 level controller. Under normal conditions the liquid level is expected to remain within the range shown as Min to Max. In this case the function of the 72.42 will be to alternate the duty between both pumps, to even wear across both pumps. There is no provision to run both pumps simultaneously.

ME function example

This shows the 72.42 Priority change relay working in conjunction with two 72.01 level controllers. Under normal conditions the liquid level is expected to remain within the range shown as Min to Max. In this case the function of the 72.42 will be to alternate the duty between both pumps, to even wear across both pumps. Should the liquid level rise above the Alarm level then the function of the 72.42 will call for the simultaneous operation of both pumps, by virtue of the signal to terminal B3 from the Alarm/Low level controller.

Note: due to the low level of 72.42 control signals, it is suggested to use level controller 72.01.8.240.5002 because of its superior low load switching capability.

Outline drawings

72.42

Screw terminal

Accessories for 72.01 and 72.11

Suspended electrode

Order appropriate number of electrodes additional to the relay.
072.31

Technical data

Max liquid temperature	${ }^{\circ} \mathrm{C}$	+80
Cable grip	mm	$\varnothing \leq 3 \ldots 6$
Electrode material		stainless steel (AISI 316L)
Max screw torque	Nm	0.7
Max. wire size	mm^{2}	1×2.5
Wire strip length	AWG	1×14

Accessories for 72.01 and 72.11

072.11

Floor water sensor, designed for the detection and reporting of the presence of floor surface water.			072.11
Technical data			
Electrode material	stainless steel (AISI 301)		
Wire capability of terminals			
Max screw torque $\quad \mathrm{Nm}$	0.8		
Max. wire size mm^{2}	solid cable	stranded cable	
	$1 \times 6 / 2 \times 6$	$1 \times 6 / 2 \times 4$	
AWG	$1 \times 10 / 2 \times 10$	$1 \times 10 / 2 \times 12$	
Wire strip length mm	9		
Other data			
Distance between electrodes and floor mm	1		
Floor fixing screw diameter	Maximum M5		
Maximum cable diameter mm	10		
Maximum length of cable connecting sensor to relay m	200 (with capacitance of $100 \mathrm{nF} / \mathrm{km}$)		
Max. liquid temperature ${ }^{\circ} \mathrm{C}$	+100		

Floor surface water sensor for connection to electrode terminals (B1 and B3) of 72.01 or 72.11 level control relay, set in Emptying function (ES or E respectively).

For ice bank control in refrigeration systems it is suggested to use the high sensitivity ($5 \ldots . .450 \mathrm{kOhm}$) types - 72.01.8.024.0002 or 72.01.8.230.0002.

Electrode holder with two pole connector, one connected directly to the electrode and the second connected to the grounded installation thread. Suitable for metal tank with $\mathrm{G} 3 / 8^{\prime \prime}$ linkage.
Electrode not incuded. Order appropriate number of electrodes holders - additional to the relay. 072.51

Technical data

Max liquid temperature	${ }^{\circ} \mathrm{C}$	+100
Max tank pressure	bar	12
Cable grip	mm	$\varnothing \leq 6$
Electrode material		stainless steel (AISI 304)

Accessories for 72.01 and 72.11

072.53
\qquad
072.500
\square
072.501

2
 072.503

011.01

Adaptor for panel mounting, plastic, 35 mm wide
011.01

Sheet of marker tags, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$ (for 72.42 only)
060.72

060.72

Electrode holder with three poles. Electrode not incuded.
Order appropriate number of electrodes holders - additional to the relay.

Technical data

Max liquid temperature
${ }^{\circ} \mathrm{C}$
$+130$
Electrode material

Electrode and electrode connector, multiple electrodes may be interconneced to provide required length Technical data
Electrode - 500 mm long, M4 thread, stainless steel (AISI 303)
072.500

Inter-electrode connector - M4 thread, stainless steel (AISI 303)
072.501

Illustration of interconnection of electrodes.

Electrode separator

072.503

Identification tag, plastic, 1 tag, $17 \times 25.5 \mathrm{~mm}$ (for 72.42 only)
019.01

Application notes for 72.01 and 72.11

Applications

The main application for these relays is for the sensing and control of the level of conductive liquids.
Selectable options allow for this control to be achieved either through a filling operation or through an emptying operation, and in either case "positive logic" is used.
Level control can be achieved around a single level - using 2 electrodes, or between Minimum and Maximum levels - using 3 electrodes.
Additionally, the 72.01, with its adjustable sensitivity setting, can be ideal for monitoring the conductivity of liquids.

Positive safety logic

These relays work according to the principle that it is the closure of a normally open output contact that will be used to control the pump, both in filling and emptying applications. Consequently, in the event of a failure of the supply local to the relay, the filling or emptying will cease. This is generally considered to be the safest option.

Overrunning of tank on filling

Care must be exercised to ensure that the tank cannot overrun. Factors that have to be considered are the pump performance, the rate of discharge from the tank, the position of the single level electrode (or maximum electrode), and the run-on time delay. Keeping the time delay to a minimum will minimise the possibility of tank overrun, but will increase the installed switching rate.

Prevent dry running of pump on emptying

Care must be exercised to ensure that the pump cannot run dry. Similar considerations must be given as outlined above. In particular, keeping the run-on time delay to a minimum will minimise the risk, but again, it will increase the installed switching rate.

Run-on time

In commercial and light industrial applications the use of a short Run-on time delay is more appropriate, due to the relatively small size of tanks and the consequential need to react quickly to the change in level. Larger scale industrial applications involving larger tanks and powerful pumps must avoid a frequent switching cycle, and the use of the 72.01 set for the longer Run-on time of 7 seconds is suggested.
Note that the short run-on time will always achieve closer control to the desired level(s), but at the cost of more frequent switching.

Electrical life of the output contact

The electrical life of the output contact will be enhanced where a larger distance between the Max. and Min. electrodes (3-electrode control) can be realised. A smaller distance, or level control to a single level (2-electrode control), will result in more frequent switching and therefore a shorter electrical life for the contacts. Similarly, the long run-on time will enhance, and the short time will reduce, electrical life.

Pump control

Small single-phase pumps within the $\mathrm{kW}(0.55 \mathrm{~kW}-230 \mathrm{~V} \mathrm{AC})$ rating stated may be driven directly by the level relay output contact. However, where very frequent switching is envisaged, it is better to "slave" a higher power relay or contactor to drive the pump motor. Large pumps (singlephase and three-phase) will of course require an interposing contactor.

Water leakage and condensation in oil lubrication systems

To detect condensed water vapour or water leakage within lubricating systems, monitor by sensors connected to B1-B3 (Function E or ES, Z1 - Z2 linked). Condensed water vapour has low conductivity, therefore choose monitoring relay type 72.01.8.240.0002 with sensitivity range of ($5 \ldots 450$) kOhm and sensor type 072.11.

Floor flooding control

To detect floor water due to spills or flooding, monitor using sensors connected to B1 - B3 (Function E or ES, Z1-Z2 linked).
Choose monitoring relay type 72.01.8.240.0000 or 72.11.8.240.0000, together with floor water sensor type 072.11 .

Electrodes and cable lengths

Normally 2 electrodes or 3 electrodes will be required for control about a single level, or control between Min. and Max. levels, respectively. However, if the tank is made of conductive material it is possible to use this as the common electrode, B3, if electrical connection can be made to it.
The maximum permitted length of cable between the electrode and the relays is 200 m , for a cable not exceeding $100 \mathrm{nF} / \mathrm{km}$.
A maximum of 2 relays and associated electrodes can be employed in the same tank - if two different levels need monitoring.
Note: It is permitted to make direct electrical connection between terminals B1-B3, and B2-B3, (without using electrodes/liquid), but in this case it is not possible to set up the sensitivity.

Electrode choice

The choice of electrodes may depend on the liquid being monitored. Standard electrodes 072.01 .06 and 072.51 are suitable for many applications but some liquids may be corrosive for example, and may therefore require custom made electrodes - but these can usually be used with the 72.01 and 72.11 relays.

On site commissioning

To confirm the suitability of the relay sensitivity to the resistance between electrodes it is suggested that the following checks are made. For convenience it is suggested that the fill function and the shortest run-on time are selected.

Commissioning

Follow these setting-up instructions to achieve correct operation: 72.01

Select the function "FS" (Filling and Short delay of 0.5 s), and set the sensitivity control to $5 \mathrm{k} \Omega$. Ensure that all electrodes are immersed in the liquid - expect the output relay to be ON. Then, slowly rotate the sensitivity control in the $150 \mathrm{k} \Omega$ direction until the level relay switches OFF (internal output relay will switch OFF and red LED will switch slowly flash).
(If the level relay does not switch OFF then, either the electrodes are not immersed, or the liquid has too high impedance or the distance between electrodes is too long).
Finally, select the filling or emptying function as required, run in real time and confirm that the level relay works as required.

72.11

Select the Filling function "F", (Z1 - Z2 open). Ensure that all electrodes are immersed in the liquid, but leave electrode B3 disconnected - output relay should be ON. Connect electrode B3, and the level relay should switch OFF
(internal output relay will switch OFF and red LED will switch slowly flash).
(If the level relay does not switch OFF then, either the electrodes are not immersed, or the liquid has too high impedance or the distance between electrodes is too long.)
Finally, select the filling or emptying function as required, run in real time and confirm that the level relay works as required.

Features

Float switch suitable for level regulation in grey or black water systems, drainage plants and pump systems

- 1 CO 20 A (8 A) 250 V AC
- 2 or 3 watertight chambers
- Cable length $5 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}$ or 20 m
- Suitable for emptying and filling
72.A1.0000.xxxx

- Float switch with 2 watertight chambers, for plumbing pumps and grey water systems
- Counterweight $(300 \mathrm{gr})$ with cable grip, included

72.B1.0000.xxxx

- Float switch with 3 watertight chambers, for dirty water systems, drainage plants and pumping stations
- Supplied with fixing kit

Ordering information

Example: 72 Series, float switch, 1 CO.
Type
$A=$ Float switch for grey water systems
B = Float switch for black water systems
00 = PVC
No. of pole

$1=1 \mathrm{CO}$
$05=5$ meters
$10=10$ meters
$15=15$ meters
$20=20$ meters

Codes

72.A1.0.000.0500
72.A1.0.000.0501
72.A1.0.000. 1000
72.B1.0.000.1000
72.B1.0.000. 1001
72.B1.0.000. 1500
72.B1.0.000. 1501
72.B1.0.000.2001

Applications

Type 72.A1

Emptying function
Filling function

When black and brown wires are used, the circuit opens when the float is down and

L

When black and blue/grey wires are used,
the circuit opens when the float is up and closes when the float in down.

In this case the brown wire must be insulated.

Filling function

Type 72.B1
Emptying function
\qquad \square ?

 4

When black and brown wires are used, the circuit opens when the float is down and closes when the float in up. In this case the blue/grey wire must be insulated
 circur for
-

When black and blue/grey wires are used, the circuit opens when the float is up and closes when the float in down.
3

Outline drawings

Type 72.A1

Type 72.B1

Features

kWh Energy meter

1 -phase with multi-functional LCD display
Type 7E. 23 5(32)A-1 module wide

- Complies with EN 62053-21 and EN 50470
- Display indicates total energy consumption, partial energy consumption (this value is resettable), instantaneous: power, voltage and current
- Seven digit counter, LCD with backlight
- Accuracy class: 1/B
- Easy to operate by one control key
- Protection class II
- Pulse output for remote energy management; SO interface (open collector) according to DIN 43864 to link the energy meter to a centrally located monitoring/management system
- Tamper-proof cover with lead seal facility available as an accessory
- Space saving small size
- 35 mm rail (EN 60715) mount
- MID compliant version (50 Hz only) available
* 0.01 kWh for readings $\leq 99,999.99 \mathrm{kWh}$ and 0.1 kWh for readings $\geq 100,000.0 \mathrm{kWh}$

For outline drawing see page 17

Specification	
Nominal/Maximum current	A
Minimum measured current	A
Current range (within accuracy class)	A
Maximum peak current	A
Supply (\& monitored) voltage (U_{N})	V AC
Operating range	
Frequency	Hz
Power consumption	W
Display (digit height 5 mm)	
Max. totalising count/Min. increment	kWh
LCD-segment pulses per kWh	
Open collector- output specification (SO+/SO-)	
Voltage (external supply)	V DC
Maximum current	mA
Maximum leakage current @ $30 \mathrm{~V} / 25^{\circ} \mathrm{C} \quad \mu \mathrm{A}$	
Pulses per kWh	
Pulse length	ms
Internal series resistance	Ω
Maximum Cable length @ $30 \mathrm{~V} / 20 \mathrm{~mA}$	m

7E.23.8.230.0001

- Nominal current 5 A (32 A Maximum)
- 1-phase 230 V AC
- kWh only
- 17.5 mm wide

7E.23.8.230.00x0

- Nominal current 5 A (32 A Maximum)
- 1-phase 230 V AC
- kWh + instantaneous W, V \& A
- 17.5 mm wide

7E Series - Energy meter

Features

kWh Energy meter
3-phase with multi-functional LCD display
Type 7E.46-0002 10(65)A - Single and Dual tariff Type 7E.56-0000 5 (6)A - for current transformers up to $1,500 \mathrm{~A}$

- Complies with EN 62053-21 and EN 50470
- Display indicates total energy consumption, partial energy consumption (this value is resettable), instantaneous power per phase or all phases, voltage per phase, current per phase
- ERROR-Display, in case of missing phase or reverse current flow
- Seven digit counter, LCD with backlight
- Accuracy class: $1 / B$
- Easy to operate by two control keys
- LCD display can be read twice within a period of 10 days following the loss of supply voltage
- Protection class II
- Pulse output for remote energy management; SO interface (open collector) according to DIN 43864 to link the energy meter to a centrally located monitoring/management system - Tamper-proof cover with lead seal facility available as an accessory
- 35 mm rail (EN 60715) mount
- MID compliant version (50 Hz only) available
* Current transformer ratios: 5:5, 50:5, 100:5, 150:5, 200:5, 250:5, 300:5, 400:5, 500:5, 600:5, 750:5, 1,000:5, 1,250:5, 1,500:5.
** 0.01 kWh for readings $\leq 99,999.99 \mathrm{kWh}$ and 0.1 kWh for readings $\geq 100,000.0 \mathrm{kWh}$
***0.1 kWh for readings $\leq 999,999.9 \mathrm{kWh}$ and 1 kWh for readings $\geq 1,000,000 \mathrm{kWh}$
For outline drawing see page 17

Specification

Nominal/Maximum current	A
Minimum measured current	A
Curen	

Current range (within accuracy class)
Maximum peak current A
Operating range

Frequency	Hz
Power consumption per phase	W

Display (digit height 6 mm)
Max. totalising count/Min. increment kWh
LCD-segment pulses per kWh
Open collector- output specification (SO+/SO-)
Voltage (external supply) V DC

Maximum current	mA
Maximum leakage current @30 V/25 ${ }^{\circ} \mathrm{C}$	$\mu \mathrm{A}$

Pulses per kWh
Pulse length

Internal series resistance
Maximum Cable length @30 V/20 mA

Technical data
Accuracy class
Ambient temperature $\quad{ }^{\circ} \mathrm{C}$
Protective class
Protection category: Housing/terminals
Approvals (according to type)
ms

7E.46.8.400.00x2

- Nominal current 10 A (65 A Maximum)
- 3-phase
- Single and Dual tariff (Day and Night)
.70 mm wide

$\mathrm{R}_{\mathrm{T} 1, \mathrm{~T} 2}=$ Tariff switching equipment

7E.56.8.400.00x0

- Nominal current 5 A (6 A Maximum)
- 3-phase
- Usable with current transformer up to 1,500 A
- 14 selectable Current Transformer ratios*
. 70 mm wide
* Current transformer ratios / F = 250 mA T

$5 / 6$
0.01
0.05... 6

180 (10 ms)
3×230
(0.8...1.15) U_{N}

50
< 1.5
Seven digit counter, LCD with backlight
999,999.9/0.01 ** 9,999,999/0.1 ***
$100 \quad 10$
5... 30
5... 30
\square

$\ldots . .30$	
20	
10	

20
\square

20	
10	
1,000	

10

1,000	10

1,000
30
10
\square
$-$

100	

100

1,000
\square

$1 / \mathrm{B}$	$1 / \mathrm{B}$
$-25 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+55^{\circ} \mathrm{C}$
II	II

IP 50/IP 20

Features

kWh Energy meter
3-phase with electro-mechanical display
Type 7E.36-0000 10(65)A - Single tariff Type 7E.36-0002 10(65)A - Dual tariff

- Complies with EN 62053-21 and prEN 50470
- Certified by PTB
(Physikalisch - Technischen Bundesanstalt)
- Accuracy class 1 / B
- Protection class II
- Pulse output for remote energy management; SO interface (open collector) according to DIN 43864 to link the energy meter to a centrally located monitoring/management system
- Tamper-proof cover with lead seal facility available as an accessory
- 35 mm rail (EN 60715) mount
- MID compliant version (50 Hz only) available

For outline drawing see page 17

Specification

Nominal/Maximum current	A
Minimum measured current	A
Current range (within accuracy class)	A
Maximum peak current	A
Supply (\& monitored) voltage (U ${ }_{\mathrm{N}}$)	V AC
Operating range	
Frequency	Hz
Power consumption per phase	W

Display (digit height 4 mm)
Max. totalising count/Min. increment kWh
LED-Pulses per kWh
Open collector- output specification (SO+/SO-)
Voltage (external supply) V DC

Maximum current	mA
Maximum leakage current $@ 30 \mathrm{~V} / 25^{\circ} \mathrm{C}$	HA

Pulses per kWh
Pulse length

Internal series resistance
Maximum Cable length @30 V/20 mA

Technical data
Accuracy class

${ }^{\circ} \mathrm{C}$	$-10 \ldots+55$	$-10 \ldots+55$	
Ambient temperature	II	II	
Protective class	IP 50/IP 20		IP 50/IP 20
Protection category: Housing/terminals		C E	PTB
Approvals (according to type)			

7E.36.8.400.00x0

- Nominal current 10 A (65 A Maximum)
- 3-phase
.70 mm wide

7E.36.8.400.00x2

- Nominal current 10 A (65 A Maximum)
- 3-phase
- Dual tariff (Day and Night)
.70 mm wide

Features

Multifunction energy meter MID certified with M-Bus integrated interface and backlit display for single-phase AC systems

- Complies with EN 62053-21 and EN 50470-3 - Display indicates total energy consumption, partial energy consumption (this value is resettable); active power, instantaneous voltage and current and reactive power via M-bus interface
- Seven digit counter, LCD with backlight
- Consumption data stored on internal EEprom
- Data transfer speed detected automatically
- Parallel connection of up to 250 energy meters
- Accuracy: Class 1 according to IEC 62053-21

Class B according to EN 50470-3

- Reading data via a dedicated control button
- Protection class II
- Accessories: Tamper-proof cover with lead seal facility
- Space saving small size
- 35 mm rail (EN 60715) mount
* 0.01 kWh for readings $\leq 99,999.99 \mathrm{kWh}$ and 0.1 kWh for readings $\geq 100,000.0 \mathrm{kWh}$
**The baud rate is recognized automatically

7E.23.8.230.0030

- Nominal current 5 A (32 A Maximum)
- M-Bus integrated interface
- 1-phase 230 V 50 Hz
- 17.5 mm wide

For outline drawing see page 17

Specification	
Nominal/Maximum current A	5/32
Minimum measured current A	0.02
Current range (within accuracy class) A	0.25... 32
Maximum peak current A	960 (10 ms)
Supply (\& monitored) voltage (U_{N}) V AC	230
Operating range	$(0.8 \ldots 1.15) U_{N}$
Frequency Hz	50
Power consumption per phase W	<0.4
Display (digit height 5 mm)	Seven digit counter, LCD with backlight
Max. totalising count/Min. increment kWh	999,999.9/0,01 *
LED-Pulses per kWh	2,000
M-bus technical data	
Bus System	M-Bus
Bus Protocol	Conforms to M-bus standard
Max. M-Bus energy meters connectable	250
Baud rate** Baud	300-2400-9600
Max reaction time (writing) ms	60
Max reaction write (reading) ms	60
Technical data	
Accuracy class	$1 / \mathrm{B}$
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-25 \ldots+55$
Protective class	II
Protection category: Housing/terminals	IP 50/IP 20
Approvals (according to type)	$C E$

Features

Multifunction energy meter MID certified with M-Bus integrated interface and backlit display for three-phase AC systems
Type 7E.46-0032 10(65)A - Dual tariff Type 7E.56-0030 5 (6)A - for current transformers up to $1,500 \mathrm{~A}$

- Complies with EN 62053-21 and EN 50470-3
- Display indicates total energy consumption, partial energy consumption (this value is resettable); active power, instantaneous voltage and current and reactive power via M-bus interface (total or for each phase)
- ERROR-Display, in case of missing phase or reverse current flow
- Seven digit counter, LCD with backlight
- Consumption data stored on internal EEprom
- Data transfer speed detected automatically
- Parallel connection of up to 250 energy meters
- Accuracy: Class 1 according to IEC 62053-21 Class B according to EN 50470-3
- Reading data via a dedicated control button
- Protection class II
- Accessories: Tamper-proof cover with lead seal facility
- 35 mm rail (EN 60715) mount
* Current transformer ratios: 5:5,50:5, 100:5, 150:5, 200:5, 250:5, 300:5, 400:5, 500:5, 600:5, 750:5, 1.000:5, 1.250:5, 1.500:5; preset at the factory: 5:5
** 0.01 kWh for readings $\leq 99,999.99 \mathrm{kWh}$ and 0.1 kWh for readings $\geq 100,000.0 \mathrm{kWh}$
*** 0.1 kWh for readings $\leq 999,999.9 \mathrm{kWh}$ and 1 kWh for readings $\geq 1,000,000 \mathrm{kWh}$
**** The baud rate is recognized automatically For outline drawing see page 17

Specification

Nominal/Maximum current
Minimum measured current
Current range (within accuracy class)
Maximum peak current A
Supply (\& monitored) voltage (U_{N}) V AC
Operating range
Frequency
Display (digit height 5 mm)
Max. totalising count/Min. increment kWh
LED. Pulses per kWh

Bus System

Bus System
Bus Protocol
Max. M-Bus energy meters connectable
Baud rate**** Baud

Max reaction time (writing)	ms
Max reaction write (reading)	ms

Technical data

Accuracy class
Ambient temperature $\quad{ }^{\circ} \mathrm{C}$

Protective class

Protection category: Housing/terminals
Approvals (according to type)

7E.46.8.400.0032

- Nominal current 10 A (65 A Maximum) - M-Bus integrated interface
- 3-phase
- Dual tariff (Day and Night)
- 70 mm wide

7E.56.8.400.0030

- Nominal current 5 A (6 A Maximum)
- M-Bus integrated interface
- 3-phase
- Usable with current transformer up to 1,500 A
- 14 selectable Current Transformer ratios*
. 70 mm wide

$\mathrm{R}_{\mathrm{T} 1, \mathrm{~T} 2}=$ Tariff switching equipment

* Current transformer ratios / F = 250 mA T
\square 10/65
5/6
0.01
0.04
0.5... 65
0.05... 6
$0.5 \ldots 65$
$1,950(10 \mathrm{~ms})$
$180(10 \mathrm{~ms})$
3×230
3×230
(0.8...1.15) U_{N}
$(0.8 \ldots 1.15) U_{N}$

50	50

<1.5
<1.5
Seven digit counter, LCD with backlight
999,999.9/0,01 **
1,000
9,999.999/0,1 ***

MBus
M-Bus
M-Bus

Features

Multifunction energy meter MID certified with Modbus RS-485 integrated interface and backlit display for single phase AC systems

- Complies with EN 62053-21 and EN 50470-3
- Display indicates total energy consumption, partial energy consumption (this value is resettable) active power, instantaneous voltage and current. Via Modbus interface reactive power and $\cos \varphi$ measurement
- Seven digit counter, LCD with backlight
- Consumption data stored on internal EEprom
- Data transfer speed detected automatically
- Parallel connection of up to 247 energy meters
- Accuracy: Class 1 according to IEC 62053-2

Class B according to EN 50470-3

- Reading data via a dedicated control button
- Protection class II
- Accessories: Tamper-proof cover with lead seal facility
- Space saving small size
- 35 mm rail (EN 60715) mount
* 0.01 kWh for readings $\leq 99,999.99 \mathrm{kWh}$ and 0.1 kWh for readings $\geq 100,000.0 \mathrm{kWh}$
** The baud rate is recognized automatically

7E.23.8.230.0210

- Nominal current 5 A (32 A Maximum)
- Modbus RS-485 integrated interface
- 1-phase 230 V 50 Hz
- 17.5 mm wide

For outline drawing see page 17

Specification	
Nominal/Maximum current A	5/32
Minimum measured current A	0.02
Current range (within accuracy class) A	0.25... 32
Maximum peak current A	960 (10 ms)
Supply (\& monitored) voltage (U_{N}) V AC	230
Operating range	$(0.8 \ldots 1.15) U_{N}$
Frequency Hz	50
Power consumption per phase W	< 0.4
Display (digit height 5 mm)	Seven digit counter, LCD with backlight
Max. totalising count/Min. increment kWh	999,999.9/0.01 *
LED- Pulses per kWh	2,000
Modbus technical data	
Bus System	RS-485 serial interface
Max. bus length m	1,200
Max. Modbus energy meters connectable	247
Baud rate** Baud	$\begin{gathered} 2,400-4,800-9,600-19,200 \\ 38,400-57,600-115,200 \end{gathered}$
Max reation time (writing/reading) ms	$60 / 60$
Technical data	
Accuracy class	$1 / \mathrm{B}$
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-25 \ldots+55$
Protective class	II
Protection category: Housing/terminals	IP 50/IP 20
Approvals (according to type)	$C \in$

Features

Multifunction energy meter MID certified with Modbus RS-485 integrated interface and backlit display for three-phase AC systems
Type 7E.46-0212 10(65)A - Dual tariff Type 7E.56-0210 5 (6)A - for current transformers up to $1,500 \mathrm{~A}$

- Complies with EN 62053-21 and EN 50470-3
- Display indicates total energy consumption, partial energy consumption (this value is resettable); active power, instantaneous voltage and current. Via Modbus interface reactive power measurement (total or for each phase)
- Seven digit counter, LCD with backlight
- Consumption data stored on internal EEprom
- Data transfer speed detected automatically
- Parallel connection of up to 247 energy meters
- Accuracy: Class 1 according to IEC 62053-21 Class B according to EN 50470-3
- Reading data via a dedicated control butlons
- Protection class II
- Accessories: Tamper-proof cover with lead seal facility
- 35 mm rail (EN 60715) mount
* Current transformer ratios: 5:5, 50:5, 100:5, 150:5, 200:5, 250:5, 300:5, 400:5, 500:5, 600:5, 750:5, 1.000:5, 1.250:5, 1.500:5; preset at the factory: 5:5
** 0.01 kWh for readings $\leq 99,999.99 \mathrm{kWh}$ and 0.1 kWh for readings $\geq 100,000.0 \mathrm{kWh}$
*** 0.1 kWh for readings $\leq 999,999.9 \mathrm{kWh}$ and 1 kWh for readings $\geq 1,000,000 \mathrm{kWh}$
**** The baud rate is recognized automatically For outline drawing see page 17

Specification

Nominal/Maximum current	A
Minimum measured current	A
Current range (within accuracy class)	A
Maximum peak current	A
Supply (\& monitored) voltage (U $\left.\mathrm{U}_{\mathrm{N}}\right)$	V AC

Operating range

Frequency
Power consumption per pha

Display (digit height 5 mm)
Max. totalising count/Min. increment
Hz

LED- Pulses per kWh
Modbus technical data
Bus System
Max. bus length
Max. Modbus energy meters connectable
A
Max reaction time (writing/reading)

Technical data
Accuracy class
Ambient temperature $\quad{ }^{\circ} \mathrm{C}$

Protective class
Protection category: Housing/terminals
Approvals (according to type)

7E.46.8.400.0212

- Nominal current 10 A (65 A Maximum)
- Modbus RS-485 integrated interface
- 3-phase
- Dual tariff (Day and Night)
- 70 mm wide

$\mathrm{R}_{\mathrm{T} 1, \mathrm{~T} 2}=$ Tariff switching equipment

7E.56.8.400.0210

- Nominal current 5 A (6 A Maximum)
- Modbus RS-485 integrated interface
- 3-phase
- Usable with current transformer up to 1,500 A
- 14 selectable Current Transformer ratios* - 70 mm wide

* Current transformer ratios $/ \mathbf{F}=250 \mathrm{~mA} \mathrm{~T}$

10/65
5/6
0.01
0.05... 6
$180(10 \mathrm{~ms})$
3×230
$(0.8 \ldots 1.15) U_{N}$
50
$<1.5<1.5$
Seven digit counter, LCD with backlight
999,999.9/0.01 **
1,000
9,999.999/0.1 ***
10

RS-485 serial interface
RS-485 serial interface
m
m
$\square \mathrm{RS}-485$

1,200	1,200
247	247

1,200-2,400-4,800-9,600-19,200

1,200-2,400-4,800-9,600-19,200 $\frac{38,400-57,600-115,200}{60 / 60}$

Ordering information

Example: Energy meter 32 A/230 V AC, with PTB certified, accuracy class 1, available with Tamper-proof lead sealed cover as accessory, for 35 mm rail (EN 60715) mounting.

Technical data

SERIES

7E Series - Energy meter

Ordering information M-Bus/Modbus versions

Example: Energy meter 32 A/230 V AC, with PTB certified, accuracy class 1, available with Tamper-proof lead sealed cover as accessory, for 35 mm rail (EN 60715) mounting.

Series

LC-Display Type 7E.23, 7E.46, 7E. 56

Indication elements

Type 7E.23		
Ttotal	kWh	Indicates total consumption
Tpart.	kWh	Indicates partial consumption, this value is resettable
P	kW	Indicates the instantaneous power
U	V	Indicates the voltage
I	A	Indicates the current
$2,000 \mathrm{Imp} / \mathrm{kWh}$		Pulses according to power consumption Error indication (line L1/L2 reversed) with pulsating $600 / 600 \mathrm{~ms}$

Note: for 7E.23.8.230.0001 only total energy consumption is displayed.

Type 7E. 46

Tl total	kWh	Indicates total consumption Tariff 1
Tl part.	kWh	Indicates partial consumption for Tariff 1, this value is resettable
T2total	kWh	Indicates total consumption Tariff 2
T2part.	kWh	Indicates partial consumption for Tariff 2, this value is resettable
P	kW	Indicates the instantaneous power per phase or all phases
U	V	Indicates the voltage per phase
I	A	Indicates the current per phase
$100 \mathrm{Imp} / \mathrm{kWh}$		Pulsed according to drawn power
kWh		Indicates the unit kWh when the consumption is displayed
L1/L2/L3		For P-, U-, I- or Error display, the corresponding phase is displayed
Error		Indicates a missing phase or reverse current flow - the appropriate phase is also displayed

Type 7E. 56		
Tlitotal	kWh	Indicates total consumption
Tl part.	kWh	Indicates partial consumption, this value is resettable
CT		Indicates the set current transformer ratio, factory setting is 5:5
Select		The transformer ratio can be selected in the menu item Select *
P	kW	Indicates the instantaneous power per phase or all phases
U	V	Indicates the voltage per phase
1	A	Indicates the current per phase
$10 \mathrm{mp} / \mathrm{kWh}$		Pulsed according to drawn power
kWh		Indicates the unit kWh when the consumption is displayed
L1/L2/L3		For P-, U-, I- or Error display, the corresponding phase is displayed
Error		Indicates a missing phase or reverse current flow - the appropriate phase is also displayed

[^15]LC-Display with backlight Type 7E.23, 7E.46, 7E. 56 with M-Bus/modbus integrated interface

Type 7E.23 (direct measurement up to $\mathbf{3 2 ~ A) ~}$		
Total kWh Indicates total consumption Tpart. kWh Indicates partial consumption. This value is resettable P kW Indicates the instantaneous power U V Indicates the voltage I A Indicates the current Flashing display 2000 Imp/kWh indicator (LCD) Flashing rate varies with the instantaneous power. Indication of incorrect connection (Lines L1/L2 reversed) by $600 / 600 \mathrm{~ms}$ flashing		

Display 7E.46.8.400.0032/0212

Type 7 E .46 (direct measurement up to 65 A)

T1 total	kWh	Indicates total consumption Tariff 1
T1part.	kWh	Indicates partial consumption for Tariff 1. This value is resettable
T2total	kWh	Indicates total consumption Tariff 2
T2part.	kWh	Indicates partial consumption for Tariff 2. This value is resettable
P	kW	Indicates the instantaneous power per phase or all phases
U	V	Indicates the phase voltage
A	A	Indicates the line current
kWh		Indicates the unit kWh when the consumption is displayed
$\mathrm{L1/L2/L3}$		For P-, U-, l- or Error display, the corresponding phase is displayed
Error	In case of Loss of Phase or reverse current flow the corresponding phase will be indicated and "Error" is displayed	
Flashing LED*	1000 Imp/kWh Flashing rate varies with the instantaneous power	

Display 7E.56.8.400.0030/0210

Type 7 EE .56 (with CT measurement up to 1500 A)

Tltotal $k W h$	Indicates total consumption
Tlpart. kWh	Indicates partial consumption. This value is resettable
CT	Indicates the current transformer ratio; factory setting is 5:5
Select	When the jumper Z1-Z2 is open, the transformation ratio can be set under the menu item: Select **
P kW	Indicates the instantaneous power per phase or all phases
U	Indicates the phase voltage
1 A	Indicates the line current
kWh	Indicates the unit kWh when the consumption is displayed
L1/L2/L3	For P-, U-, I- or Error display, the corresponding phase is displayed
Error	In case of Loss of Phase or reverse current flow the corresponding phase will be indicated and "Error" is displayed
Flashing LED *	$10 \mathrm{Imp} / \mathrm{kWh}$ Flashing rate varies with the instantaneous power

** To adjust the current transformer ratio remove the bridge Z1-Z2 and reset the energy meter according to the operating instructions. Then lock it again with the bridge. For a tamper proof lead seal use four terminal covers (07E. 16).

Mechanical Display Type 7E.12, 7E.13, 7E.16, 7E. 36
LED indication (Normal operation)

Type	Energy consumption			Pulses per kWh	Pulse space	The LED Pulse rate represents the instantaneous power being consumed, according to the following
	None	Low	High			
$\begin{aligned} & 7 E .12 \\ & 7 E .13 \end{aligned}$				2,000	100 ms	kW = (number of pulse per Minute) / 33.3
7E. 16				1,000	100 ms	kW = (number of pulse per Minute) / 16.7
7E. 36				100	150 ms	kW = (number of pulse per Minute) / 1.7

LED indication (Abnormal operation)
Status indicates errors of installation, as below
Type 7E.12, 7E.13, 7E. 16
Device ON, incorrect connection (L-N inverted).
Mark $=600 \mathrm{~ms}$, Space $=600 \mathrm{~ms}$

Type 7E. 36
Mark $=100 \mathrm{~ms}$,
Phase L1 \uparrow L1 \downarrow inverted
or loss

Phase L2 \uparrow L2 \downarrow inverted or loss

Phase L3 \uparrow L3 \downarrow inverted or loss

SO+/SO- Open collector output wiring diagram Type 7E.12, 7E.13, 7E.23, 7E.16, 7E.36, 7E.46, 7E.56
The pulsating open collector output available at terminals $\mathrm{SO}+$ and SO - can be interfaced with the input of a computer, plc or other energy management equipment to allow the remote monitoring of energy consumed.

Overview of LCD display values M-Bus/Modbus - Type 7E. 23

Overview of LCD display values M-Bus/Modbus - Type 7E. 46

T1 total
T1 total energy
consumption

T1 part
T1 partial energy consumption

T2 total
T2 total energy
consumption
T2 part
T2 partial energy
consumption

P
Instantaneous Power

Voltage

I
Current

Overview of LCD display values M-Bus/Modbus - Type 7E. 56

Outline drawing

Type 7E.12.8.230.0002 / 7E.16.8.230.0000/10

Type 7E.23.8.230.0001* / 7E.23**

Type 7E.36.8.400.0002/12

Type 7E.13.8.230.0000/10

Type 7E.36.8.400.0000/10

Type 7E.46-7E. 56

Accessories

Terminal cover for type 7E. 13, 7E. 23
For the tamper-proof lead seal use two terminal covers

07E. 13

Terminal cover for type 7E. 12, 7E.16, 7E.36, 7E. 46 and 7E. 56
07E. 16
7E.12, 7E. 16 - For the tamper-proof lead seal use two terminal covers
7E.36, 7E.46, 7E. 56 - For the tamper-proof lead seal use four terminal covers

Features

SPD Type 1+2 Surge arrester range - three phase high discharge capability with no following current - system ($230 / 400 \mathrm{~V}$)

- Surge arresters, suitable for low-voltage applications, to protect equipment against overvoltage by direct lightning strike, induced overvoltage and switching overvoltage
- To be installed at the boundary of LPZ 0 - LPZ 1 zones or higher - Combined high energy varistor block and heavy duty encapsulated spark gap (GDT) ensures high discharge current and eliminates leakage current
- No follow current
- Very low residual voltage
- Low Up voltage
- Replaceable modules
- Upside down mounting possible (thanks to dual terminal markings and new restraint system for
the replaceable module that permits its inversion)
- Visual fault signalling: Healty/Replace
- Double screw terminal
- Remote status signalling contact:

Healty/Replace/Presence. Connector 07P. 01 included - According to EN $61643-11$

- 35 mm rail EN 60715 mounting, 36 mm each pole

7P.03.8.260.1025SPD Type 1+2 for three phase system without Neutral
(PEN conductor). Varistor + GDT protection L1, L2, L3-PEN
7P.04.8.260.1025SPD Type 1+2 for three phase system with Neutral. Varistor + GDT protection L1, L2, L3-N + spark gap protection N-PE
7P.05.8.260.1025SPD Type 1+2 for three phase system with Neutral. Varistor + GDT protection L1, L2, L3-N + varistor + GDT protection N-PE
For outline drawing see page 13, 14

SPD specification

Nominal voltage (U_{N}) VAC
Maximum operating voltage $\left(\mathrm{U}_{\mathrm{C}}\right) \quad \mathrm{VAC}$
Lightning impulse current ($10 / 350 \mu \mathrm{~s})\left(l_{\text {imp }}\right) \mathrm{kA}$
Nominal discharge current $(8 / 20 \mu s)\left(I_{n}\right) \quad k A$
Maximum discharge current $(8 / 20 \mu s)\left(I_{\text {max }}\right) \mathrm{kA}$
Voltage protection level (U_{P}) kV
Temporary overvoltage - 120 min (TOV) AC
Ability to independently switch off the following current (lif) A
Response time (t_{a})
Short-circuit proof at maximum overcurrent protection $\mathrm{kA}_{\mathrm{rms}}$
Maximum overcurrent protection (fuse rating gl/gG)
Maximum overcurrent protection for serial connection
Replacement module code
Other technical data
Ambient temperature range $\quad{ }^{\circ} \mathrm{C}$
Protection degree
Wire size

	mm^{2}
	AWG
Wire strip length	mm
Screw torque	Nm

Remote status signalling contact specification	
Contact configuration	
Rated current	$\mathrm{A} \mathrm{AC/DC}$
Rated voltage	$\mathrm{V} \mathrm{AC/DC}$
Wire size (07P.01)	
	AWG

7P.03.8.260.1025

- SPD Type $1+2$
- $3 \times$ combined varistor and encapsulated spark gap - Visual fault and remote contact fault signalling varistor/GDT status - Upside down mounting position - Replaceable modules

7P.04.8.260.1025

- SPD Type 1+2
- $3 \times$ combined varistor and encapsulated spark gap +1 encapsulated spark gap - Visual fault and remote contact fault signalling varistor/GDT status, N-PE GDT presence
- Upside down mounting position
- Replaceable modules

L-PEN
230
260
25
30
60
1.5
440

L-N
230

N-PE
7P.05.8.260.1025

- SPD Type 1+2 - $4 \times$ combined varistor and encapsulated spark gap - Visual fault and remote contact fault signalling varistor/GDT status - Upside down mounting position - Replaceable modules

L, N-PE
L, N-PE
230
260
25

No following current
No

No following current	100
100	100
50	-
250 A	-
$125 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	-

7P.00.8.260.0025 7P.00.1.000.0100
7P.00.8.260.0025

IP20

solid cable
$1 \times 2.5 \ldots 1 \times 50$
$1 \times 13 \ldots 1 \times 1$

4

1 CO (SPDT)		1 CO (SPDT)		1 CO (SPDT)	
$0.5 / 0.1$		$0.5 / 0.1$		$0.5 / 0.1$	
$250 / 30$		$250 / 30$		$250 / 30$	
solid cable	stranded cable	solid cable	stranded cable	solid cable	stranded cable
1.5	1.5	1.5	1.5	1.5	1.5
16	16	16	16	16	16

Features

SPD Type 1+2 Surge arrester range with high performance "Low U_{p} " - Single phase / three phase system

- Surge arrester suitable for $230 / 400 \mathrm{~V}$ system applications to prevent overvoltage effects caused by direct or indirect lightning strikes
- To be installed at the boundary of LPZ 0 and LPZ 1 zones
- Low U_{p} to protect senstive equipment
- Visual indication of varistor status

Healthy/Replace

- Contact for remote signalling of varistor status. Connector 07P. 01 included
- Replaceable varistor and Spark Gap modules
- Complies with EN 61 643-11
- 17.5 mm rail EN 60715 mounting for each module
7P.12.8.275.1012 SPD Type $1+2$ for single phase system with Neutral.
- Varistor protection L-N + spark gap protection N-PE for single phase systems
- Replaceble Spark Gap and varistor modules

7P.13.8.275.1012 SPD Type 1+2 for three phase
system without Neutral (PEN conductor).

- Varistor protection L1, L2, L3-PEN for three phase systems
- Replaceable varistor modules

7P. 12 / 7P. 13

For outline drawing see page 14

SPD specification

Nominal voltage (U_{N}) V AC
Maximum continous operating voltage (U_{C}) V AC/DC
Lightning impulse current ($10 / 350 \mu \mathrm{~s})\left(l_{\mathrm{imp}}\right) \mathrm{kA}$
Nominal discharge current $(8 / 20 \mu s)\left(I_{n}\right) \quad k A$
Maximum discharge current ($8 / 20 \mu \mathrm{~s}$) $\left(I_{\text {max }}\right) \mathrm{kA}$
Voltage protection level (U_{P})
Ability to independently switch off the
following current ($\left(l_{\mathrm{f}}\right)$
Response time (t_{a})
Short-circuit proof at maximum overcurrent protection $\mathrm{kA}_{\text {rms }}$
Maximum overcurrent protection (fuse rating $\mathrm{gL} / \mathrm{gG}$)
Replacement module code

Other technical data

Ambient temperature range $\quad{ }^{\circ} \mathrm{C}$
Protection degree
Wire size

	mm^{2}
	AWG
Wire strip length	mm
Screw torque	Nm

Remote status signalling contact specification

7P.12.8.275.1012

- SPD Type 1+2
- Replaceble Spark Gap and varistor modules (for single phase systems)
- Visual and remote signalling of varistor status

7P.13.8.275.1012

- SPD Type $1+2$
- Replaceable varistor modules
(for three phase systems)
- Visual and remote signalling of varistor status

Features

SPD Type 1+2 Surge arrester range with high performance "Low U_{p} " - three phase system

- Surge arrester suitable for $230 / 400 \mathrm{~V}$ system applications to prevent overvoltage effects caused by direct or indirect lightning strikes
- To be installed at the boundary of LPZ 0 and LPZ 1 zones
- Low U_{p} to protect senstive equipment
- Visual indication of varistor status Healthy/Replace
- Contact for remote signalling of varistor status. Connector 07P. 01 included
- Replaceable varistor modules
- Complies with EN 61 643-11
- 17.5 mm rail EN 60715 mounting for each module
7P.14.8.275.1012SPD Type $1+2$ for three phase system with Neutral.
- Varistor protection L1, L2, L3-N+Spark Gap protection N-PE
- Replaceable varistor modules
- Non replaceable high discharge current spark gap 7P.15.8.275.1012SPD Type $1+2$ for three phase system with Neutral.
- Varistor protection L1, L2, L3,N-PE
- Replaceable varistor modules

7P. 14 / 7P. 15
Screw terminal

For outline drawing see page 14

SPD specification

Nominal voltage $\left(U_{N}\right) \quad V$ AC
Maximum continous operating voltage (U_{C}) $\vee \mathrm{AC} / \mathrm{DC}$
Lightning impulse current ($10 / 350 \mu \mathrm{~s})\left(l_{\text {imp }}\right) \mathrm{kA}$
Nominal discharge current $(8 / 20 \mu s)\left(I_{n}\right) \quad k A$
Maximum discharge current $(8 / 20 \mu \mathrm{~s})\left(I_{\text {max }}\right) \mathrm{kA}$
Voltage protection level (U_{p})
Ability to independently switch off the following current ($\left.\right|_{\mathrm{f}}$)

Response time $\left(t_{\mathrm{a}}\right)$
Short-circuit proof at maximum overcurrent protection $\mathrm{kA}_{\mathrm{rms}}$

Maximum overcurrent protection (fuse rating $\mathrm{gL} / \mathrm{gG}$)
Replacement module code

Other technical data

Ambient temperature range $\quad{ }^{\circ} \mathrm{C}$

Protection degree
Wire size

	mm^{2}
	AWG
Wire strip length	mm
Screw torque	Nm

Remote status signalling contact specification
Contact configuration

Rated current	A AC/DC
Rated voltage	V AC/DC

Wire size (07P.01)

$+$

7P.14.8.275.1012

- SPD Type 1+2
- Replaceable varistor module
- Visual and remote signalling of varistor status

7P.15.8.275.1012

- SPD Type 1+2
- Replaceable varistor module
- Visual and remote signalling of varistor status

Approvals (according to type)

Features

SPD Type 2 Surge arrester range for single / three phase AC systems and for DC systems

- Surge arrester suitable for $A C$ and $D C$ systems to protect equipment against induced overvoltage or switching transients
- To be installed at the boundary of LPZ 1-LPZ 2 zones or higher
- Visual indication of varistor status - Healthy/Replace - Contact for remote signalling of varistor status.
- Connector (07P.01) included (depending on the version - Replaceable varistor and spark gap modules
- Replaceable varistor and spark gap
- 17.5 mm rail EN 60715 mounting for each module

7P.21.8.075.1015 SPD Type 2, unipolar protection suitable for DC applications or low voltage AC single phase systems

- Varistor protection +/-or L/N (GND);-/+ or GND (L/N)
- Replaceable module

7P.21.8.130.1015 SPD Type 2, unipolar protection suitable for DC application or low voltage AC single phase systems

- Varistor protection +/- or L/N (GND);-/+ or GND (L/N)

7P.21.8.275.x020 SPD Type 2, unipolar protection suitable to realize single phase or three phase systems (230/400 V)

- Varistor protection L/N(GND)-GND/(L/N)
- Replaceable module

7P.21.8.440.x020 SPD Type 2, unipolar protection suitable for three phase systems (400 V AC)

- Varistor protection L/N(GND)-GND/(L/N)
- Replaceable module

7P.22.8.275.x020 SPD Type 2 for single phase system with Neutral

- Varistor protection L-N + spark gap protection N-PE - Replaceable varistor and spark gap modules

7P.27.8.275.x020 SPD Type 2 for single phase system with Neutral

- Varistor protection L, N-PE
- Replaceable varistor modules

For outline drawing see page 14

SPD specification	
Nominal voltage (U_{N}) V	$V A C / D C$
Maximum continous operating voltage (U_{C}) V AC/DC	
Nominal discharge current (8/20 $\mu \mathrm{s})\left(I_{n}\right)$	$\left.l_{n}\right) \quad k A$
Maximum discharge current (8/20	$\left(l_{\text {max }}\right) k A$
Voltage protection level at $5 \mathrm{kA}\left(\mathrm{U}_{\mathrm{P} 5}\right)$	kV
Voltage protection level at $\mathrm{I}_{\mathrm{n}}\left(\mathrm{U}_{\mathrm{p}}\right)$	kV
Response time ($t_{\text {a }}$)	ns
Shortcircuit proof at maximum overcurrent protection $\mathrm{kA}_{\text {rms }}$	
Maximum overcurrent protection (fuse rating gl/gG)	
Replacement module code	
Other technical data	
Ambient temperature range	${ }^{\circ} \mathrm{C}$
Protection degree	
Wire size	
	mm^{2}
	AWG
Wire strip length	mm
Screw torque	Nm

Remote status signalling contact specification

[^16]7P.21.8.xxx.x0xx

- SPD Type 2 (1 varistor) - Replaceable varistor module - Visual and optional remote connector for signalling of the varistor status

* 7P.20.8.075.0015
** 7P.20.8.130.0015
*** 7P. 208.8750020 **** 7P.20.8.440.0020

075.1015	130.1015	275.1020	440.1020	L-N	N-PE
$60 / 60$	$110 / 125$	$230 /-$	$400 /-$	$230 /-$	-
$75 / 100$	$130 / 170$	$275 / 350$	$440 / 585$	$275 /-$	$255 /-$

15	15	20	20
40	40	40	40
0.3	0.45	0.9	1.5
0.4	0.6	1.2	1.9
25			
50			
160 A			
	$* *$	$* * *$	$* * * *$

spark-gap)

- Combination of replaceable varistor and encapsulated spark gap modules
- Visual and optional remote
connector for signalling of the varistor status
7P.22.8.275.x020

- SPD Type $2(1$ varistor + 1

- SPD Type 2 (2 varistors) - Replaceable varistor modules - Visual and optional remote connector for signalling of the varistor status

Features

SPD Type 2 Surge arrester range - three phase systems

- Surge arrester suitable for $230 / 400 \mathrm{~V}$ system applications to protect equipments against induced overvoltage or switching transients
- To be installed at the boundary of LPZ 1-LPZ 2 zones or higher
- Visual indication of varistor status -

Healthy/Replace

- Contact for remote signalling of varistor status. Connector (07P.01) included (depending on the version)
- Replaceable varistor and spark gap modules
- Complies with EN 61643-11:2012
- 35 mm rail (EN 60715) mounting

7P.23.8.275.1020 SPD Type 2 for three phase system without Neutral (PEN conductor).

- Varistor protection L1, L2, L3-PEN
- Replaceable varistor module

7P.24.8.275.x020 SPD Type 2 for three phase system with Neutral.

- Varistor protection L1, L2, L3 + Spark gap
protection N-PE
- Replaceable varistor and spark gap modules

7P.25.8.275.x020 SPD Type 2 for three phase system with Neutral.

- Varistor protection L1, L2, L3, N-PE
- Replaceable varistor module

7P.23.8 / 7P. 24 / 7P. 25
Screw terminal

For outline drawing see page 15

SPD specification

Nominal voltage (U_{N})
Maximum continous operating voltage (U_{C}) V AC/DC
Nominal discharge current $(8 / 20 \mu \mathrm{~s})\left(I_{\mathrm{n}}\right) \quad \mathrm{kA}$
Maximum discharge current $(8 / 20 \mu s)\left(I_{\text {max }}\right) k A$
Voltage protection level at $5 \mathrm{kA}\left(\mathrm{U}_{\mathrm{P} 5}\right) \quad \mathrm{kV}$
Voltage protection level at $I_{n}\left(U_{p}\right)$
Response time (t_{a})
Short-circuit proof at maximum overcurrent protection $\mathrm{kA}_{\text {rms }}$
Maximum overcurrent protection (fuse rating gl/gG)
Replacement module code
Other technical data
$\begin{array}{ll}\text { Ambient temperature range } & { }^{\circ} \mathrm{C} \\ \text { Protection degree } & \end{array}$

Wire size | mm^{2} |
| :---: |
| AWG |

Wire strip length	mm
Screw torque	Nm

Remote status signalling contact specification	
Contact configuration	
Rated current	$\mathrm{A} \mathrm{AC/DC}$
Rated voltage	V AC/DC
Wire size (07P.01)	
	AWm

Approvals (according to type)

7P.23.8.275.1020

- SPD Type 2 (3 varistors)
- Replaceable varistor module, 3 pole
- Visual and remote signalling of varistor status

$\begin{gathered} \text { 07P. } 01 \\ 121114 \end{gathered}$		$\begin{gathered} 07 P .01 \\ 121114 \end{gathered}$		$\begin{gathered} 07 P .01 \\ 121114 \end{gathered}$	
	PEN	L-N	N-PE	L, N-PE	
	230	230	-	230	
	5/350	275/-	255/-	275/350	
	20	20	20	20	
	40	40	40	40	
	0.9	0.9	-	0.9	
	1.2	1.2	1.5	1.2	
	25	25	100	25	
	50	50	-	50	
	60 A	160 A	-	160 A	
7P.20.8.275.0020		7P.20.8.275.0020	7P.20.1.000.0020	7P.20.8.275.0020	
$-40 \ldots+80$					
IP20					
solid cable			stranded cable		
$1 \times 1 \ldots 1 \times 35$			$1 \times 1 \ldots 1 \times 25$		
$1 \times 17 \ldots 1 \times 2$			$1 \times 17 \ldots 1 \times 4$		
12					
3					
1 CO (SPDT)		$1 \mathrm{CO}(\mathrm{SPDT})$		1 CO (SPDT)	
0.5/0.1		0.5/0.1		0.5/0.1	
250/30		250/30		250/30	
solid cable	stranded cable	solid cable	stranded cable	solid cable	stranded cable
1.5	1.5	1.5	1.5	1.5	1.5
16	16	16	16	16	16
CE EHL ECO PG					

7P.25.8.275.x020

- SPD Type 2 (4 varistors) - Replaceable varistor module, 4 pole
- Visual and optional remote connector for signalling of the varistor status
-SPD Type 2
(3 varistors + 1 spark-gap)
- Combination of replaceable varistor and encapsulated spark gap modules
- Visual and optional remote connector for signalling of the varistor status
7P.24.8.275.x020

L, N-PE

275/350
20
40
0.9

50
160

Features

SPD Type 1+2 and Type 2 Surge arrester range for Photovoltaic applications

- Surge arrester for protection of DC side ($1,020 \mathrm{~V}$) of systems in photovoltaic applications
- Protects equipment against overvoltage caused by direct lightning strike (Type $1+2$ only) and induced overvoltages (Type 1+2 and Type 2)
7P.26.9.000.x015, $\mathrm{U}_{\mathrm{CPV}}=1,020 \mathrm{~V}$ DC (Type 2) 7P.23.9.000.x015, $U_{\text {CPV }}=1,020$ V DC (Type 2) 7P.03.9.000.1012, $\mathrm{U}_{\mathrm{CPV}}=1,000 \mathrm{~V}$ DC (Type 1+2)
- Visual indication of varistor status Healthy/Replace
- Contact for remote signalling of varistor status. Connector (07P.01) included (depending on the verision)
- Replaceable modules
- Complies with prEN 50539-11:2010
- 35 mm rail (EN 60715) mounting

7P. 23.9 / 7P. 26 / 7P. 03
Screw terminal

For outline drawing see page 15

Other technical data

Ambient temperature range ${ }^{\circ} \mathrm{C}$
Protection degree
Wire size

	AWG
Wire strip length	mm
Screw torque	Nm

Remote status signalling contact specification

Contact configuration

Rated current	A AC/DC
Rated voltage	$\mathrm{V} \mathrm{AC/DC}$

Wire size (07P.01)
\qquad
Approvals (according to type)
A

- SPD Type 2 (2 varistors + 1 spark-gap) for 1,020 V DC photovoltaic systems
- Combination of replaceable varistor and encapsulated spark gap modules
- Visual and optional remote connector for signalling of the varistor status

- SPD Type 2 (3 varistors) for 1,020 V DC photovoltaic systems
- Replaceable varistor modules - Visual and optional remote connector for signalling of the varistor status

- SPD Type 1+2 (3 varistors) for 1,000 V DC photovoltaic systems
- Replaceable varistor modules - Visual and remote signalling of varistor status

Varistor

Varistor module
1,000
500

510	1020

30	15
2	30

7P.20.9.500.00157P.20.1.000.9015 7P.20.9.500.0015
12.5
30
$4 / 2.5$
2
1.8

25	100	25
125	-	125

.
$-40 \ldots+80$
$\mathbb{I P} 20$

solid cable		stranded cable		solid cable	stranded cable
$1 \times 1 \ldots 1 \times 35$		$1 \times 1 \ldots 1 \times 25$		$1 \times 2.5 \ldots 1 \times 50$	$1 \times 2.5 \ldots 1 \times 35$
$1 \times 17 \ldots 1 \times 2$		$1 \times 17 \ldots 1 \times 4$		1x13...1x 1	$1 \times 13 \ldots 1 \times 2$
14				9	
3				4	
1 CO (SPDT)		1 CO (SPDT)		1 CO (SPDT)	
0.5/0.1		0.5/0.1		0.5/0.1	
250/30		250/30		250/30	
solid cable	stranded cable	solid cable	stranded cable	solid cable	stranded cable
1.5	1.5	1.5	1.5	1.5	1.5
16	16	16	16	16	16
		C E EH[(8) PG		

Features

SPD Type 3, Surge arrester for TT and TN-S system (with Neutral)
Single phase applications within socket outlets and 35 mm rail mounting

- Protects electrical and electronic equipment sensitive to impulse overvoltage
- " $1+1$ " configuration: varistor + spark gap protection (avoiding earth leakage current)
- Conforms to EN 61643-11

7P.32.8.275.2003

- Provides easy additional surge protection for 230 V sockets
- Acoustic indication of need to replace varistor
- 3-wires, 150 mm long, for connection to socket terminals

7P.37.8.275.1003

- Permits serial connection for optimized load protection up to 16 A
- Integrated remote signalling contact of varistor status
- Relay with gold change-over contact for reliable low level switching
- 17.5 mm L-N/N-PE protection
- Mounting on 35 mm DIN rail (EN60715)
* see diagram L7P page 21

For outline drawing see page 15, 16

SPD specification

Nominal voltage $\left(\mathrm{U}_{\mathrm{N}}\right)$	V AC
Maximum continuous operating voltage $\left(\mathrm{U}_{\mathrm{C}}\right) \vee \mathrm{VAC}$	
Rated load current I_{L}	A
Nominal discharge current $(8 / 20 \mu \mathrm{~s})$	
$\mathrm{L}-\mathrm{N}, \mathrm{L}(\mathrm{N})-\mathrm{PE}\left(\mathrm{I}_{\mathrm{n}}\right)$	kA
Test voltage of the combined generator	
L-N, L(N)-PE (Uod)	kV
Voltage protection level L-N, L(N)-PE (UP)	kV
Response time L-N, L(N)-PE ($\left.\mathrm{t}_{\mathrm{a}}\right)$	ns

Short-circuit proof at maximum overcurrent
protection

Maximum overcurrent protection	
Other technical data	
Ambient temperature range	${ }^{\circ} \mathrm{C}$
Protection degree	
Wire size	mm^{2}
	AWG
Wire strip length	mm
Screw torque	Nm

Remote status signalling contact specification	
Contact configuration	
Rated current	A AC
Rated voltage	V AC
Breaking capacity DC 1: 30/110	A
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Contact material	
Approvals (according to type)	

7P.32.8.275.2003

- SPD Type 3
- Acoustic (buzzing) signalling of varistor fault

7P.37.8.275.1003

- SPD Type 3
- Series connection for protection of loads up to 16 A
- Remote signaling of varistor status by integral change-over relay contact

7P Series - Dafa line SPD

Features

Data line SPD for Ethernet Cat. 6

- Suitable for Ethernet, POE (Power over Ethernet) and dataline transmission system up to 250 MHz
- Protection of all pairs of conductors with minimum attenuation
- Aluminum chassis and RJ45 in metal screens
- Included accessories for simple installation near the equipment to be protected, LPZ boundary 2-3 (Type 3)
- Complies to EN 61643-21
- Mounting on 35 mm DIN rail

7P.68.9.060.0600

- Ethernet Cat 6-60 V
- Shielded RJ45 connectors

For outline drawing see page 16

SPD specification	
Nominal voltage of system (U_{N}) V DC	48
Maximum operating voltage (U_{C}) V DC	60
Nominal current $\mathrm{I}_{L} \mathrm{~mA}$	500
C2 total nominal discharge current $(8 / 20 \mu s)$ line - PG $\left(I_{n}\right)$	1.6
C2 nominal discharge current ($8 / 20 \mu s$) line-line (I_{n})	200
Voltage protection level line-line @ In (C2) - (Up)	40
Voltage protection level line-PG @ In (C2) - (Up)	350
Voltage protection level line-line @ $1 \mathrm{kV} / \mu \mathrm{s}$ (C3) - (Up)	65
Insertion attenuation @ 250 MHz dB	<2
Response time ns	1
Other technical data	
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-40 \ldots+80$
Degree of protection	IP 20
Input-Output connection	RJ45/RJ45 shielded
Approvals (according to type)	CE

Ordering information

Example: 7P series, surge protection device, Type 2, single phase ($\mathrm{Uc}=275 \mathrm{~V}$), 1 varistor +1 encapsulated spark gap, with remote status signalling contact, $\ln =20 \mathrm{kA}$

Type
0 = Combined type $1+2$ arresters
high discharge capability
1 = Type $1+2$ high performance "Low U_{p} " surge arresters
2 = Type 2 surge arresters
3 = Type 3 surge arresters
6 = Data line SPD

Circuit

1 = Single phase (1 varistor)
$2=$ Single phase (1 varistor +1 spark-gap)
3 = Three-phase (3 varistors)
4 = Three-phase (3 varistors + 1 spark-gap)
$5=$ Three-phase (4 varistors)
$6=2$ varistors +1 spark-gap
7 = Single phase (2 varistors) Type 2 (7P.27)
7 = Single phase (1 varistor +1 spark gap) Type 3,
DIN rail mounting (7P.37)
$8=$ Protected poles (Data line SPD)
$9=$ N-PE spark-gap for three phase system
0 = Spare module

Supply version

1 = N+PE connection
(only for single spark gap replaceable module and 7P.09)
$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$
9 = DC (PV application and Data line SPD)
Supply voltage
$000=1,000$ V DC Max PV SPD T1 +2 (7P.03.9), 1,020 V DC Max PV SPD T2 (7P.23.9, 7P.26.9) or N+PE connection for spark gap modules $060=60 \mathrm{~V}$ DC Max (Uc) and Data line SPD
$075=75 \mathrm{~V} \mathrm{AC}$
$130=130 \mathrm{~V} \mathrm{AC}$
$200=1,200$ V DC Max
$420=420$ V DC Max
$750=750$ V DC Max
$440=440 \vee \operatorname{Max}(\mathrm{Uc})$ for SPD Type 2 (for $\mathrm{U}_{\mathrm{N}}=400 \mathrm{~V} \mathrm{AC}$)
$275=275 \mathrm{~V}$ Max for SPD Type $1+2$ "Low U_{p} ", Type $2\left(U_{c}\right)$ (for $U_{N}=230-240 \mathrm{~V} \mathrm{AC}$) and Type 3
$260=260 \mathrm{~V}$ Max (U_{c}) for SPD Type $1+2$ (for $\left.U_{N}=230-240 \mathrm{~V} \mathrm{AC}\right)$
$255=255$ V Max (Uc) for SPD Type 1, N+PE (7P.09)

Upside down mounting

7P Series - Surge Protection Device (SPD)

Replaceable modules

Replacement varistor and Spark-Gap modules
Maximum operating voltage ($\left.\mathrm{U}_{\mathrm{C}} / U_{\text {Crv }}\right)$ V AC/DC
Lightning Impulse current ($10 / 350 \mu s)\left(l_{\text {imp }}\right) \mathrm{kA}$
Nominal discharge current (8/20 $\mu \mathrm{s})\left(\mathrm{In}_{\mathrm{n}}\right) \mathrm{kA}$
Maximum discharge current ($8 / 20 \mu \mathrm{~s}$) ($I_{\text {max }}$) kA
Voltage protection level (U_{p}) kV
Response time (ta_{a}) ns
Maximum overcurrent protection

ules	7P.00.8.260.0025	7P.00.9.500.0012	7P.00.1.000.0050	7P.00.1.000.0100
	Varistor	Varistor	Spark-Gap	Spark-Gap
kC	$260 /-$	$-/ 500$	$255 /-$	$255 /-$
kA	25	12.5	50	100
kA	30	30	100	100
kV	1.5	60	100	100
ns	25	1.8	1.5	1.5
	250 A gL/gG	-	100	100

	Replacement varistor and Spark-Gap modules
	Maximum operating voltage (UC) V AC
	Lightning Impulse current ($10 / 350 \mu \mathrm{~s})\left(l_{\text {imp }}\right) \mathrm{kA}$
	Nominal discharge current (8/20 ss) (I_{n}) kA
	Maximum discharge current ($8 / 20 \mathrm{\mu s}$) ($I_{\text {max }}$) kA
	Voltage protection level (U_{p}) kV
	Response time (ta_{a}) ns
	Maximum overcurrent protection

Replacement varistor modules	
Maximum operating voltage $\left(\mathrm{U}_{\mathrm{C}}\right) \mathrm{VAC} / \mathrm{DC}$	
Nominal discharge current $(8 / 20 \mu s)\left(I_{\mathrm{n}}\right) \mathrm{kA}$	
Maximum discharge current $(8 / 20 \mu s)\left(I_{\text {max }}\right) \mathrm{kA}$	kV
Voltage protection level $\left(\mathrm{U}_{\mathrm{p}}\right)$	ns
Response time $\left(\mathrm{t}_{\mathrm{a}}\right)$	
Maximum overcurrent protection	

	7P.20.8.075.0015	7P.20.8.130.0015	7P.20.8.275.0020	7P.20.8.440.0020
	Varistor	Varistor	Varistor	Varistor
kA	15	$130 / 170$	$275 / 350$	$440 / 585$
kA	40	15	20	20
kV	0.4	40	40	40
ns	25	0.6	1.2	1.5
	$160 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	$160 \mathrm{gL} / \mathrm{gG}$	$160 \mathrm{gl} / \mathrm{gG}$	$125 \mathrm{gl} / \mathrm{gG}$

7P.20.9.375.0020	7P.20.9.500.0015	7P.20.9.600.0015
Varistor	Varistor	Varistor
$-/ 375$	$-/ 510$	$-/ 600$
20	15	15
40	30	30
1.8	2	2.1
25	25	25
$125 \mathrm{AgL} / \mathrm{gG}$	-	-

Replacement Spark-Gap modules	7P.20.1.000.0020	7P.20.1.000.9015
	Spark-Gap	Spark-Gap
Maximum operating voltage ($\mathrm{U}_{\mathrm{C}} / \mathrm{U}_{\text {CPV) }}$) V AC/DC	255 /-	- / 1,020
Nominal discharge current (8/20 $\mu \mathrm{s}$) (I_{n}) kA	20	15
Maximum discharge current ($8 / 20 \mu s)\left(I_{\text {max }}\right) \mathrm{kA}$	40	30
Voltage protection level (U_{p}) kV	1.5	2.5
Response time (t_{a}) ns	100	100
Maximum overcurrent protection	-	-

Temporary Overvoltage (TOV)	V	7P.32.8.275.2003	7P.37.8.275.1003
Transient OverVoltage 5s L-N (UTOV)	335	335	
Transient OverVoltage 5s L-PE (UToV)	V	400	400
Transient OverVoltage $\left.200 \mathrm{~ms} \mathrm{L-PE} \mathrm{(U}_{\text {TOV }}\right)$	V	1,430	1,430

Outline drawings
Type 7P. 09
Screw terminal

Type 7P. 01
Screw terminal

Type 7P. 02
Screw terminal

Type 7P. 03
Screw terminal

Type 7P. 04
Screw terminal

144			
[/7	7/3	[17	
E-	0		$\xrightarrow{\text { Eat }}$

Outline drawings

Type 7P. 05
Screw terminal

Type 7P. 12
Screw terminal

Type 7P. 13
Screw terminal

Type 7P. 14
Screw terminal

Type 7P. 21
Screw terminal

Type 7P. 22 / 7P. 27
Screw terminal

Outline drawings

Type 7P.23.8
Screw terminal

Type 7P. 24
Screw terminal

Type 7P.23.9
Screw terminal

Type 7P. 25
Screw terminal

Type 7P.26.9.000.1015
Screw terminal

Type 7P.26.9.420.1020
Screw terminal

Type 7P.23.9.000.6020
Screw terminal

Tipo 7P.37.8.275.1003
Screw terminal

Outline drawings

Type 7P.68.9.060.0600
Screw terminal

Type 7P. 00
Replaceable module

Type 7P. 10/20
Replaceable module Connector

Installation example - SPD Type $1+2$
TT-SINGLE PHASE SYSTEM - SPD UP-STREAM OF RCD

TT-THREE PHASE SYSTEM - SPD UP-STREAM OF RCD

II-2015, www.findernet.com

Installation example for SPD Type $1+2$ and Type 2 - Single phase

TT-SINGLE PHASE SYSTEM - SPD UP-STREAM OF RCD

Installation example for SPD Type 3
Ti or TN-S SINGLE PHASE SYSTEM - INCORPORATED IN SOCKET OUTLET

[^17]Installation example for SPD Type $1+2$ and Type 2 - Three phase

TT-THREE PHASE SYSTEM - SPD UP-STREAM OF RCD

TN-S THREE PHASE SYSTEM - SPD DOWN-STREAM OF OVERCURRENT PROTECTION

TT or TN-S THREE PHASE SYSTEM - SPD DOWN-STREAM OF RCD

TN-C THREE PHASE SYSTEM - SPD UP-STREAM OF OVERCURRENT PROTECTION

Installation example for SPD Type 3 - Single phase
TT or TN-S SINGLE PHASE SYSTEM - SPD DOWN-STREAM OF RCD Serial connection

TT, TN-S SINGLE PHASE: parallel connection

TT or TN-S SINGLE PHASE SYSTEM - SPD DOWN-STREAM OF RCD Serial connection + BUS line

Function

Visual local LED signalling and remote signalling of varistor status

L7P Temperature/Current diagram for model 7P. 37

Zone I: SPD and other devices installed as a group (without gap)

(A) $\mathrm{MCB}=\mathrm{B} 10 \mathrm{~A}, \mathrm{C} 10 \mathrm{~A}$
(B) 7P.37.8.275.1003
(C) 22.32.0.xxx.x4x0

Zone II: SPD spaced, at least from one side, from components that generate heat during their operation (17.5 mm gap)

(A) $\mathrm{MCB}=\mathrm{B} 16 \mathrm{~A}, \mathrm{C} 16 \mathrm{~A}$
(B) 7P.37.8.275.1003
(C) 22.32.0.xxx.x4x0
(d) 17.5 mm

A $\mathrm{MCB}=\mathrm{B} 16 \mathrm{~A}, \mathrm{C} 16 \mathrm{~A}$

7P.37.8.275.1003

(B) 7P.37.8.275.1003
(D)
22.32.0.xxx.x3x0
22.32.0.xxx.x4x0

Zone III: SPD spaced, on both side, from components that generate heat during their operation (20 mm gap)

Zone IV: SPD installed individually in free air (without significant influence from nearby components)

Installation examples - photovoltaic

SURGE VOLTAGE PROTECTORS

Surge voltage protectors (such as Finder's Surge Protection Devices, SPD) are intended to be installed in electrical systems, to protect people and machines from surge voltages that can occur on the electrical supply line and which would otherwise have disastrous consequences. These surge voltages can be atmospheric (lightning) or can originate on the electrical system due to, for example: the opening and closing of large loads, short circuits, or the switching of large power factor correction capacitors. The SPD can be described as a switch that is in parallel with the electrical system's supply line - which it is protecting. At the nominal network voltage (e.g. 230 V) the SPD appears as an open switch, having a very high impedance (almost infinite). But, under an overvoltage condition its impedance rapidly falls to near 0Ω. This effectively applies a short circuit across the supply lines and immediately "drains" the overvoltage to earth. In this way the supply line is protected wherever an SPD is installed. When the overvoltage has passed, the SPD impedance rises rapidly and resumes the state of an open switch again.

Figure 1: Ideal operation of an SPD

SPD technologies

Finder surge voltage protectors use either varistors or spark gaps.
Varistor: This can be considered as a variable resistance that at nominal voltage has a very high ohmic value. But the resistance rapidly falls to near zero as the voltage surges. In this way the varistor applies a near short circuit which clamps the surge voltage. The varistor is however subject to progressive degradation due to the small leakage current that occurs at the nominal voltage, and with the number of interventions. With every overvoltage that occurs the leakage current rises and accelerates the end of life for the device which is ultimately indicated by the change from green to red in the signal-window.

Spark gap: This comprises two electrodes separated by air, or a gas. When a surge voltage occurs an electrical arc bridges the gap and a surge current flows to limit the surge voltage to a low and constant level. The arc extinguishes only when the surge current falls below about 10 ampere. The gas guarantees a constant level of breakdown voltage since the arc is struck in a protected environment; not exposed to pressure or humidity variations or impurities as would happen if it had occurred in air. There is however, a delay before the device arcs and the surge current is diverted, and this is dependent on the magnitude of the original voltage surge and on its rate of rise. Therefore, the voltage protection level can vary, although it is guaranteed to be less than U_{p}.

Figure 2: SPD component characteristics.

Installation (Overvoltage) categories

Choosing the SPD requires matching the Rated Impulse Voltage of the SPD with that of the equipment to be protected. This in turn relates to the Installation category (Overvoltage category). Installation categories are described within IEC 60664-1, which for a $230 / 400 \mathrm{~V}$ installation prescribes as follows:

- Installation category I: 1.5 kV for "particularly sensitive" equipment (e.g. electronic devices like PC or TV set);
Installation category II: 2.5 kV for "user" equipment subject to "normal" impulse voltages (e.g. household electrical appliances, mobile items);
- Installation category III: 4 kV for equipment that are part of a fixed installation (e.g. switchboards, switches)
Installation category IV: 6 kV for equipment installed at or near the origin of main incoming supply mains (e.g. energy meters).

Lightning Protection Zones and installation considerations

International standards refer to the various Lightning Protection Zones by the letters LPZ followed by an appropriate number.
LPZ OA: An external area, where a direct lightning strike is possible and where there is total exposure to the electromagnetic field induced by the lightning.
LPZ OB: An external area, but below a lightning conductor providing direct lightening strike protection. There remains total exposure to the electromagnetic field.
LPZ 1: Area within a building - therefore protected from direct lightning strike. The electromagnetic field will be attenuated, depending on the degree of shielding. This zone has to be protected by SPD type 1 device(s) at its boundary with the LPZ OA or OB zone.
LPZ 2: An area, typically a room, where the lightning current has been limited by preceding surge protectors. This zone has to be protected by SPD type 2 device(s) at its boundary with the LPZ 1 zone.
LPZ 3: An area within a room where the lightning current has been limited by preceding surge protectors (typically the wiring after a socket or an area within a metal enclosure).
This zone has to be protected by SPD type 3 device(s) at its boundary with the LPZ 2 zone.

On the following picture (Figure 3, representation is not binding) it is shown that the transition from a protection zone to the next is through the installtion of SPD. SPD Type 1 must be connected upstream the system, at the point of delivery connection. As an alternative it is possible to use SPD Type $1+2$. The grounding conductor must have a minimum section of $6 \mathrm{~mm}^{2}$ for SPD Type 1, of $4 \mathrm{~mm}^{2}$ for SPD Type 2, and 1.5 mm^{2} for SPD Type 3 (If the building has an LPS, reference should be made to CEI 81-10/4 for the correct dimension of the cable).

Figure 3: Typical relationship between Lightning Protection Zones, Installation Categories and SPD types

Rated values and marking common to all SPD

[$\mathrm{U}_{\mathbf{c}}$] Maximum continuous operating voltage: Under this voltage the SPD is guaranteed to appear as an "open switch". This voltage is normally at least equal to the nominal supply voltage $\left(U_{N}\right)+10 \%$. For the Finder SPD, U_{C} is specified as 275 V .
[U_{p}] Voltage protection level: This is the highest voltage level seen across the SPD during its intervention. For example, for Finder SPD Type 2, this means that a 4 kV overvoltage would be limited by the SPD to a maximum 1.2 kV . Consequently, electronic devices such as PC, TV, stereo, etc. are protected - as their own internal protection will handle overvoltages U_{p} to 1.5 kV .
To better understand this concept; imagine that the SPD is a switch in series a low resistance. In the case of an overvoltage the switch closes and all the current goes through the resistance. According to Ohm's law the voltage developed across the resistance will be this resistance \times the current $(V=R \times I)$, and will be limited to $<U_{p}$.

Figure 4: Overvoltage limiting
Short circuit proof: A further characteristic, not normally marked on the product but important for its correct installation, is the Short circuit proof at maximum overcurrent protection. This is the maximum short-circuit current that the SPD is able to withstand when it is installed with additional maximum overcurrent protection - such as a fuse rated in accordance with the value stated under the SPD specification. Consequentely the maximum prospective short-circuit current of the system at the point of installation of the SPD must not exceed this value.

Rated vaules and marking of SPD Type 1

SPD Type 1 must be connected upstream the system, at the point of delivery of power energy. SPD protects building and people from the risk of direct lightning (fire and death) and are characterized by:
[${ }_{\text {imp }}$ 10/350] Impulse current: $l_{\text {imp }}$ corresponds to the peak value of a 10/350 $\mu \mathrm{s}$ current impulse waveform. This waveform represents a direct lightning strike and is used in tests to prove the performance of SPD type 1 devices.

Figure 5: $10 / 350 \mu$ s current waveform
Comparison of the waveforms in figures 5 and 6 shows the much higher energy content controlled by the type 1 SPD.
[$\mathrm{I}_{\mathrm{n}} 8 / 20$] Nominal discharge current: The peak current (and waveform shape) through the SPD under conditions prescribed by EN 62305 to represent the surge current as a consequence of a lightning strike to the electric supply line.
I (peak)

Figure 6: 8/20 $\mu \mathrm{s}$ current waveform

Rated values and marking of SPD Type 2

SPD Type 2 devices are designed to remove all the overvoltage from supply circuits that are not likely to be directly hit by lightning. SPD Type 2 are connected downstream SPD Type 1 or SPD Type 1+2, (minimum distance 1 m) and they protect machine and tools connected to the ground and reduce the risk of economic loss.
SPD Type 2 are characterized by:
[$\mathrm{In}_{\mathrm{n}} 8 / 20$] Nominal discharge current: The peak current (and waveform shape) through the SPD under conditions prescribed by EN 62305 to represent the surge current as a consequence of a lightning strike to the electric supply line.
[$I_{\max } 8 / 20$] Maximum discharge current: Peak value of the highest current of a $8 / 20 \mu s$ waveform that an SPD can discharge at least once without breaking.

Rated values and marking of SPD Type 3

SPD type 3 devices are used to protect the end user from overvoltage. They may be installed in supply networks where SDP types 1 and/or 2 already exist. They can be installed in fixed or mobile sockets and have the following characteristic parameters.
$U_{o c}$: test voltage. This is the peak value of the no load voltage of the combined test-generator; this has a waveform of $1.2 / 50$ رs (figure 7) and can supply at the same time current with waveform 8/20 us (figure 6).

Figure 7: 1.2/50 μ voltage waveform

Suggestion for the connection

The correct connection of SPD requires a shortest as possible connection to the local equipotential bar, to which are connected PE cables of the equipment to be protected. From the local equipotential bar there is a connection to the EBB. The phase wiring remains appropriate to the load.

Short-circuit protection for the SPD is provided by the overcurrent protective devices (fuses type $\mathrm{gL} / \mathrm{gG}$) recomended.

If the overcurrent protective devices F1 (which are part of the installation) have a rating smaller than or equal to the maximum recommended rating for the overcurrent protective devices for the SPD, then F2 (back up fuse), can be omitted.

7P.OX:
If $\mathrm{F} 1>250 \mathrm{~A}$, then $\mathrm{F} 2=250 \mathrm{~A}$
If $\mathrm{F} 1<=250 \mathrm{~A}, \mathrm{~F} 2$ can be omitted
7P.1X, 7P.2X:
If $\mathrm{F} 1>160 \mathrm{~A}$, then $\mathrm{F} 2=160 \mathrm{~A}$
If $\mathrm{F} 1<=160 \mathrm{~A}, \mathrm{~F} 2$ can be omitted

Coordination of SPD

Optimal protection from surges requires cascaded coordinated SPDs. Coordination has the purpose of splitting the energy associated with voltage across the SPDs and it is achieved by introducing an impedance between the SPDs, or alternatively, by connecting them using wires having the minimum length indicated in the figures below, in order to use the cable's own impedance.

V-shape connection

Using a V-shaped connection eliminates transferring downstream the inductive voltage generated by the surge current in the connecting wire to the SPD. This increases the protection to the system and equipment downstream. A limitation of this connection is that the nominal current for the downstream system is limited to 125A, which is the maximum current permitted through the double SPD terminals.

For systems where the rated current is greater than 125 A , it is necessary to connect the SPD in parallel with the equipment (E/I).

Connecting cable

Depending on the type of connection, serial (V-shape) or parallel (T-shape), ensure that both the maximum cable lengths and minimum cross section of the connecting wires are respected in accordance with the information below (IEC 60634-5-534):

The section of the connecting wires (copper) must not be less than: SPD Tipo 1: $16 \mathrm{~mm}^{2}$ if it is subject to discharge a significant lightning current, $6 \mathrm{~mm}^{2}$ otherwise
SPD Type 2:6 mm²
SPD Type 3: $1.5 \mathrm{~mm}^{2}$

PROTECTING PHOTOVOLTAIC (PV) SYSTEMS AGAINST LIGHTNING

Installation characteristics

[$\mathrm{U}_{\text {ocstc }}$] PV voltage: Open circuit voltage, measured under standardized test conditions, of the PV module, panel, array, or the DC side of the photovoltaic inverter. prEN50539-12.
[Iscstc]: Short-circuit current: Short-circuit current, measured under standardized test conditions, of the PV module, panel, array, or photovoltaic inverter. prEN50539-12.
[$\mathrm{U}_{\text {CPV }}$] SPD Maximum continuous operating voltage: Must be equal or greater than to 1.2 times Uocstc in all conditions of radiation and temperature. prEN50539-11, prEN50539-12.
[ISCPV]: Maximum prospective short-circuit current from the power system for which the SPD, in conjunction with the disconnectors specified, is rated. EN50539-11.

System installation

Photovoltaic systems are generally located external to a building and can be subjected to the direct or indirect effects of lightning.
Whilst the installation of photovoltaic panels on the roof does not, in itself, increase the risk of direct lightning, the only practical way to protect against the effects of a direct lightning strike would be the use of a lightning protection system (LPS).
The indirect effects of lightning can however, be mitigated by the appropriate use of Surge Protection Devices (SPD). These indirect effects occur when lightning strikes in proximity to the structure and where magnetic induction creates an overvoltage in the conductors a danger to both people and equipment. In particular, the $D C$ cables of a PV system would be exposed to the high conducted and radiated disturbances caused as a result of the lightning currents. In addition, overvoltages in PV systems are not only of atmospheric origin. It is also necessary to consider overvoltages due to switching on electrical networks connected to them. These overvoltages can also damage both the inverter and the PV panels, and this explains the need to protect the inverter on both $D C$ and $A C$ sides.

Photovoltaic system on a building without a lightning protection system (LPS)
As an example, Figure 10 represents a simplified photovoltaic system placed on a building without lightning rod. In such a system, the protection against lightning must be considered at the following points of installation:

- DC input of the inverter
- AC output of the inverter
- Low voltage supply network

At the DC input to the inverter SPDs specific for photovoltaic systems must be installed, according to the PV system voltage. At the inverter AC output, type 2 surge arresters must be installed suitable for the type of system. At the point of connection to the LV supply network, install type 2 surge arresters suitable to the type of system (TT, TN). In more complex systems, it might be necessary to introduce additional SPDs. DC side: if the distance between the inverter and PV modules exceeds 10 m , it is necessary to replicate and install the SPD as close as possible to the PV modules.

Figure 10: example of a photovoltaic system located on a building without LPS, protected on the DC side by an SPD with $U_{\text {OCSTC }}=420 \mathrm{~V}$, and on the AC side by a $7 P .22$, specific for $T T$ systems.

Photovoltaic system on a building with a lightning protection

 system (LPS)Where an LPS exists it is good practice to install the photovoltaic panels in the area protected by the lightning rod.
In addition it is necessary to realize a good equipotential bonding system, which must be positioned as close as possible to the entry point of LV supply into the structure. The LPS, the SPD and all metal parts have to be connected to this equipotential system.
SPD protection on the DC depends on the safety distance (referred in EN50539-12:12-2012).
Note that under EN 62305 installation of a Type 1 SPD is mandatory at the point of delivery of the AC electricity supply, whether or not the building has LPS (with or without solar panels).

SPD fuse protection

Conforming to prEN50539-1 1: 2010, Finder SPDs are equipped with a thermal disconnector able to safely disconnect a worn or damaged varistor up to a value of short-circuit current equal to the short-circuit current withstand value ((scpvl), as specified in the technical data. Ensure that the PV short circuit current $\mathrm{I}_{\mathrm{sc}}<\mathrm{I}_{\text {scpr }}$.
Ensure that the PV short circuit current Isc<lscpv or increase the number of the strings.

Insulation distances and wiring

To conform with prEN50539-11 insulation distances and minimum wiring cross section must be respected.

Insulation distances		Minimum Wiring [mm ${ }^{2}$]	
$U_{\text {CPV }}\left(\right.$ SPD) $\geq 1.2 \times U_{\text {OCSTC }}$	A $[\mathrm{mm}]$	+ +- Poles	Ground
750 V DC	5	4	6
1,000 V DC	5	4	6
1,200 V DC	7	4	6

78
78 Series - Switch mode power supplies

Features

Range of modular DC power supplies

- Low (<0.4 W) stand-by power absorption
- Thermal protection: internal, with Vout shutdown
- Short circuit protection: hiccup (auto-recovery) mode
- Input protection: replaceable internal fuse plus spare (78.36)
- Overvoltage protection: varistor
- Flyback topology
- Compliant to EN 60950-1 and EN 61204-3
- Parallel working for automatic redundancy: with OR-IN diode
- Dual and series connection permissible
- Small dimensions: 17.5 mm (1 module) or 70 mm (4-modules) wide, 60 mm deep
- 35 mm rail (EN 60715) mount

For outline drawing see page 12
Output specification

Output current $\left(-20 \ldots+40^{\circ} \mathrm{C}, 230 \mathrm{~V} \mathrm{AC}\right.$ input $)$
Rated current $\mathrm{I}_{\mathrm{N}}\left(50^{\circ} \mathrm{C}\right.$, full input operating range)
Rated voltage
Rated power
Output power $\left(-20 \ldots+40^{\circ} \mathrm{C}, 230 \mathrm{~V} \mathrm{AC}\right.$ input) W
Peak current capability for 3 ms *
Output voltage adjust
Voltage variation (from no-load to full-load)

Voltage ripple @ full load ** mV
Hold-up time@full load: with 100 V AC input ms with 260 V AC input ms

Input specification

Nominal voltage $\left(U_{N}\right) \quad$| V AC $(50 / 60 \mathrm{~Hz})$ |
| :---: |
| V DC (not polarized) |

Operating range $\quad V \mathrm{AC}(50 / 60 \mathrm{~Hz})$
Max power absorption
(@ 100 V AC, 50 Hz)

| Stand-by power absorption W |
| :--- | :--- |
| Power factor |

Max current absorption (@ 88 V AC) A
Max. inrush current (peak @ 265 V) for 3 ms A

Replaceable protection fuse

Technical data

78.12.... 2400

- 24 V DC, 12 W output
78.12.... 1200

- 12 V DC, 12 W output
78.36

- 24 V DC, 36 W output
* (see diagrams P78)
** peak to peak, 100 Hz component, with 100 V AC input
*** $88 \ldots 100 \mathrm{~V}$ AC with output current limited to 80% IN
**** (see derating diagrams L78)

0.63	1.25	1.7
0.50	1	1.5

F

78 Series - Switch mode power supplies

Features

Range of modular DC power supplies

- High efficiency (up to 91%)
- Low (<0.4 W) stand-by power absorption
- Thermal protection: internal, with Vout shutdown
- Short circuit protection: hiccup (auto-recovery) mode
- Overload protection: fold-back mode (78.50 only)
- Input protection: replaceable internal fuse plus spare
- Overvoltage protection: varistor
- Flyback topology
- ZVS (Zero-voltage-switching), quasi-resonant mode technology
- Compliant to EN 60950-1 and EN 61204-3
- Parallel working for automatic redundancy: with OR-IN diode
- Dual and series connection permissible
- Small dimensions: 70 mm (4-modules) wide, 60 mm deep
- 35 mm rail (EN 60715) mount

Screw terminal

For outline drawing see page 12

Output specification		
Output current ($-20 \ldots+40^{\circ} \mathrm{C}, 230 \mathrm{~V}$ AC input) A	2.8	4.6
Rated current $\mathrm{I}_{\mathrm{N}}\left(50^{\circ} \mathrm{C}\right.$, full input operating range) A	2.5	4.2
Rated voltage V	24	12
Rated power W	60	50
Output power ($-20 \ldots+40^{\circ} \mathrm{C}, 230 \mathrm{~V} \mathrm{AC} \mathrm{input)} \mathrm{~W}$	68	55
Peak current capability for 3 ms * A	10	12
Output voltage adjust V	24... 28	12... 15
Voltage variation (from no-load to full-load)	< 1 \%	< 1 \%
Voltage ripple @ full load ** mV	< 200	< 200
Hold-up time@full load: with 100 V AC input ms	< 20	< 30
with 260 V AC input ms	< 130	< 150
Input specification		
Nominal voltage (U_{N}) V AC (50/60 Hz)	110... 240	110... 240
V DC (not polarized)	220	220
Operating range V AC (50/60 Hz)	88... 265	88... 265
V DC	140... 370	140... 370
Max power absorption VA	90	89
(@ $100 \mathrm{~V} \mathrm{AC}$,50 Hz) W	67.5	58.3
Stand-by power absorption W	<0.4	< 0.4
Power factor	0.75	0.65
Max current absorption (@88 V AC) A	0.9	0.85
Max. inrush current (peak @ 265 V) for 3 ms A	30	30
Replaceable protection fuse	1.6 A - T	1.6 A - T
Technical data		
Efficiency (@230 V AC) \%	91	90
MTTF H	>500.000	>400.000
Start-up delay s	< 1	< 1
Dielectric strength between input/output V AC	3,000 (class II)	3,000 (class II)
Dielectric strength between input/PE V AC	1,500 (class I)	1,500 (class I)
Ambient temperature range *** ${ }^{\circ} \mathrm{C}$	-20...+70	-20...+70
Protection category	IP 20	IP 20
Approvals (according to type)		

Features

Industrial DC Power Supply Switching

- High efficiency (up to 90%)
- Low stand-by power absorption
- Forward topology
- Thermal protection: internal with pre-alert alarm via LED and auxiliary contact, and with Vout shutdown for safety
- Overload indication: pre-alert alarm via LED and auxiliary contact indication
- Boost current: without time limit, with LED and auxiliary contact indication
- Overload protection: fold back mode
- Short circuit protection: hiccup (auto recovery) mode
- Input protection: replaceable internal fuse plus spare
- Overvoltage protection: varistor
- Compliant to EN 60950-1 and 61204-3
- Parallel working also for redundancy: with OR-IN diode
- Dual and series connection permissible
- 35 mm rail (EN 60715) mount

For outline drawing see page 12
Output specification
Output current $\left(-20 \ldots+40^{\circ} \mathrm{C}, 230 \mathrm{~V} \mathrm{AC}\right.$ input) Rated current $\mathrm{I}_{\mathrm{N}}\left(50^{\circ} \mathrm{C}\right.$, full input operating range) A
Rated voltage
Rated power W

Output power $\left(-20 \ldots+40^{\circ} \mathrm{C}, 230 \mathrm{~V} \mathrm{AC}\right.$ input) W
Peak current capability for 5 ms * A
Output voltage adjust
Voltage variation (from no-load to full-load)
Voltage ripple @ full load ** mV
Hold-up time@full load: with 110 V AC input ms

> Input specification

Nominal voltage (U_{N}) V AC $(50 / 60 \mathrm{~Hz})$

V DC	220	110... 240
Operating range \quad V AC $(50 / 60 \mathrm{~Hz})$	110... 265	88... 265
V DC	155... 275 (polarized)	95... 275 (not polarized)
Drop out DC Voltage V	140 (with $\mathrm{I}_{\text {output }}=2.5 \mathrm{~A}$)	80
Max power absorption VA	195 (@60Hz)	145 (@50 Hz)
(@ minimum V AC operating range) W	137 (@60Hz)	145 (@50Hz)
Stand-by power absorption W	< 2.1	< 3.3
Power factor	0.7	0.998
Max current absorption A	1.7 (@110 V AC)	1.6 (@88 V AC)
Max. inrush current (peak @ 265 V) for 3 ms A	10	12
Replaceable protection fuse	2.5 A - T	2.5 A - T
Technical data		
Efficiency (@230 V AC) \%	90	89
MTTF H	> 500.000	> 400.000
Start-up delay s	< 1	< 1
Dielectric strength between input/output V AC	2,500 (class III)	2,500 (class III)
Dielectric strength between input/PE V AC	1,500 (class I)	1,500 (class I)
Ambient temperature range *** ${ }^{\circ} \mathrm{C}$	$-20 \ldots+70$	$-20 \ldots+70$
Protection category	IP 20	IP 20
Approvals (according to type)	C (1L) pending	$\text { C } \in$

78.1C

- 24 V DC, 120 W output - Voltage regulation 24-28V
78.1D

- 24 V DC, 130 W output - Voltage regulation 24-28V
- Double stage with active PFC
(Power Factor Correction)

Replaceable fuse

Thermal protection signalization with LED

* (see diagrams P78)
** peak to peak, 100 Hz component, with 110 V AC input
*** (see derating diagrams L78) A

DC

-

Ordering information

Example: 78 series switching power supply, 36 W 24 V DC output, supply voltage $110 \ldots 240 \mathrm{~V}$ AC, replaceable fuse.

Codes

78.12.1.230.1200
78.12.1.230.2400
78.36.1.230.2401
78.60.1.230.2403
78.50.1.230.1203
78.1C.1.230.2404
78.1D.1.230.2414

Technical data

EMC specifications (according to EN 61204-3)		Reference standard	78.12, 78.36	78.60, 78.50	78.1C, 78.1D
Electrostatic discharge	contact discharge	EN 61000-4-2	4 kV	4 kV	4 kV
	air discharge	EN 61000-4-2	8 kV	8 kV	8 kV
Radiated electromagnetic field	80...1,000 MHz	EN 61000-4-3	$6 \mathrm{~V} / \mathrm{m}$	$10 \mathrm{~V} / \mathrm{m}$	$10 \mathrm{~V} / \mathrm{m}$
	1...2.8 GHz	EN 61000-4-3	$3 \mathrm{~V} / \mathrm{m}$	$3 \mathrm{~V} / \mathrm{m}$	$3 \mathrm{~V} / \mathrm{m}$
Fast transients (burst $5 / 50 \mathrm{~ns}, 5$ and 100 kHz)	on supply terminals	EN 61000-4-4	2 kV	3 kV	3 kV
Voltage pulses on supply terminals (surge 1.2/50 $\mu \mathrm{s}$)	common mode	EN 61000-4-5	2 kV	2 kV	3 kV
	differential mode	EN 61000-4-5	$\begin{aligned} & 2 \mathrm{kV}(78.12), \\ & 4 \mathrm{kV*}(78.36) \end{aligned}$	4 kV *	4 kV **
Radio-frequency common mode voltage (0.15... 230 MHz)	on supply terminals	EN 61000-4-6	6 V	10 V	10 V
Short interruptions		EN 61000-4-11	5 cycles	6 cycles	6 cycles
Radio-frequency conducted emissions	0.15... 30 MHz	EN 55022	class B	class B	class B
Radiated emissions	$30 \ldots 1,000 \mathrm{MHz}$	EN 55022	class B	class B	class A
Terminals			Max		Max...Min
Wire size (Solid cable, stranded cable)		mm^{2}	$1 \times 4 / 2 \times 2.5$		$1 \times 4 \ldots 1 \times 0.5$
		AWG	$1 \times 12 / 2 \times 14$		$1 \times 12 \ldots 1 \times 20$
(가) Screw torque		Nm	0.8		0.5
Wire strip length		mm	9		9
Other data					
Power lost to the environment with rated output current		W	2 (78.12), 5 (78	78.50), 5.4 (60)
		W	12 (78.1C), 13.2	8.1D)	

[^18]Output specification
L78-1 Output current vambient temperature (78.12)

L78-2 Output current vambient temperature (78.36)

L78-3 Output current v ambient temperature (78.60)

L78-4 Output current v ambient temperature (78.50)

P78-1 Output peak current v time (78.12)

P78-2 Output peak current v time (78.36)

P78-3 Output peak current v time (78.60)

P78-4 Output peak current v time (78.50)

Output specification

L78-5 Output current v ambient temperature (78.1C)

L78-6 Output current v ambient temperature (78.1D)

P78-5 Output peak current v time (78.1C

P78-6 Output peak current v time (78.1D)

Hiccup mode

Under normal conditions, the 78 Series Power Supply supplies the current required by the load.
However, under abnormal conditions such as a short circuit or heavy overload (To) the output voltage will be rapidly reduced to zero - followed by the current (T_{1}). After approximately 2 seconds (T_{1} to T_{2}), the power supply checks for the persistence of the anomaly over the time period T_{2} to T_{3} (30 to 100 ms - dependent on the type of anomaly). If the anomaly persists, as shown above, the current is again reset to 0 A for a further 2 s (T_{3} to T4). This "hiccup" process is repeated until the anomaly is removed (T_{n}), whereon the power supply then returns to normal working.

Output specification

FB78-1 Output voltage vs output current (78.50)

FB78-2 Output voltage vs output current (78.1C)
FB78-3 Output voltage vs output current (78.1D)

I: fold-back characteristic for temperature up to $50^{\circ} \mathrm{C}$ II: fold-back characteristic for temperature up to $25^{\circ} \mathrm{C}$ * / ** / ***: See LED table below

Fold-back technology permits to supply the load also in heavy condition. In case of heavy overload, the fold-back circuit will provide the output current and the output voltage, in accordance to the diagram " FB " of each model. In practice, when overcurrent is drawn by the load, the fold-back circuit reduces the output voltage supplying the current up to the maximal value, then it starts to work in hiccup mode. Also in case of short circuit, the power supply will work in hiccup mode. Both these conditions ends when the anomaly is removed, and the power supply returns to normal working. The fold-back mode allows to use the power supply as a battery charger, in particular 78.50 for charging lead batteries rated $15 \ldots 20 \mathrm{Ah}$. It is suggested to insert a diode in series between the + output and the + input of the battery (if not already installed in the battery unit)

Fold-back characteristic for ambient temperature up to $50^{\circ} \mathrm{C}$ * / ** / ***: See LED table below

78.1C, 78.1D LED table

Type	Area	State		LED	Contact 11-14						
$\begin{aligned} & \text { 78.1C.1.230.2404 } \\ & \text { 78.1D.1.230.2414 } \end{aligned}$	*	OK	-	OFF	I-						
	**	Overload	-	OFF	\square						
	***	Short circuit	-	\|	l			l		 OFF	\square
	8	Thermal limit	-								
	δ	Thermal protection	-	OFF							

78.12, 78.36, 78.50, 78.60 LED table

Type	State	LED	
78.12.1.230. $\times \times 00$ 78.36 .1 .230 .2401 78.50 .1 .230 .1203 78.60 .1 .230 .2403	OK	\bullet	
	Short circuit		

Wiring diagrams

Dual connection

Parallel connection (78.50 only)

Wiring diagrams for 78.1C / 78.1D
78.1C - Power supply connection

78.1D - Power supply connection

Dual connection

Parallel connection

Series connection

Application example: redundancy connection

Automatic (with parallel connection)

Note: Since parallel working is intended to provide automatic redundancy, rate the load current at no more than In.

Diode(s)

Diode for type 78.12, 78.36, 78.50, 78.60

TO-220AC STPS 1545D

TO-220AB STPS30L40CT

Diode for type 78.1C, 78.1D
TO-247AD
MBR 4060PT

Outline drawings
78.12

Screw terminal

78.36

Screw terminal

$78.50 / 78.60$

Screw terminal

ㅌ

78.1C / 78.1D

Screw terminal

Accessories

Sheet of marker tags, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$
060.72

Identification tag, plastic, 1 tag, $17 \times 25.5 \mathrm{~mm}$ (for $78.12 / 36 / 50 / 60$)
019.01

Features

Panel thermostat

- Small, compact size (17.5 mm wide)
- Snap action themostatic Bimetal sensor
- Wide temperature setting range
- Long electrical life
- 35 mm rail (EN 60715) mount

For outline drawing see page 2

Contact specification

Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load AC1 VA
Rated load AC15 (230 V AC) VA

Single phase motor rating AC3 (230 V AC) kW
Breaking capacity DC $1: 30 / 110 / 220 \mathrm{~V}$

Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Standard contact material
Temperature setting range

Setting range (ventilation)

Switch temperature differential K	-		7 ± 4
Setting range (heating) ${ }^{\circ} \mathrm{C}$	$-20 \ldots+40$	+0... +60	-
Switch temperature differential K	7 ± 4		-
Technical data			
Electrical life at rated load AC1 cycles			$100 \cdot 10^{3}$
Ambient temperature range ${ }^{\circ} \mathrm{C}$			$-45 \ldots+80$
Protection category			IP 20
Approvals (according to type)			

Heating control - Should the panel temperature fall below the (minimum) set temperature the contact will close to call for heat. The contact will open when this set temperature is exceeded.
Ventilation control - Should the panel temperature exceed the (maximum) set temperature then the contact will close to call for cooling.
The contact will open when the temperature falls below this set temperature.

Ordering information

Example: 7T Series, thermostat for ventilation control, contact activates ventilation should the panel temperature exceed the set value (max $+60^{\circ} \mathrm{C}$), 35 mm rail (EN 60715) mount.

Technical data

Insulation				
Dielectric strength between open contacts	500			
Other data	Nm	0.5		
Screw torque	mm^{2}	1×2.5	solid cable	stranded cable
Max. wire size	AWG	1×12	1×1.5	

Outline drawings

71.81

Screw terminal

Features

Filter Fan for electrical cabinets and enclosures 120 V or 230 V AC versions

- Very low acoustic noise
- Minimal depth within enclosure
- Air volume (14...470) $\mathrm{m}^{3} / \mathrm{h}$ (with Exhaust Filter installed in cabinet)
- Air volume (24...630) $\mathrm{m}^{3} / \mathrm{h}$ (free flow)
- Power consumption (4...130) W
- Operating voltage: 120 or $230 \mathrm{~V} \mathrm{AC}(50 / 60 \mathrm{~Hz})$
- Time-saving installation and maintenance
- Further available versions*:

EMC Filter Fan (7F.70) and
EMC Exhaust Filter (7F.07)
Filter Fan supplied in Reverse flow mode (7F.80)

* Product codes, see pages 6 \& 9

Note:
By reversing the fan motor, the air direction can be changed from "Inlet" Filter Fan mode to "Exhaust" Filter Fan mode ** (except for the types 7F.50.8.xxx.4370, 7F.50.8.xxx. 5500 and 7F.50.8.xxx.5630).
** Supplied in "Inlet" Filter Fan mode (Standard).
Fan data
Air volume (free flow)
Air volume (with exhaust filter installed) Noise level
Life time at $40^{\circ} \mathrm{C}$

Electrical data

Operating voltage	V AC $(50 / 60 \mathrm{~Hz})$
Current consumption	A
Rated power	W

Other data
Housing, cover

7F.50.8.xxx. 1020

- Operating voltage (120 or 230) V AC - Air volume $24 \mathrm{~m}^{3} / \mathrm{h}$
- Rated power 13 W - Size 1

7F.50.8.xxx. 2055

Operating voltage (120 or 230) V AC - Air volume $55 \mathrm{~m}^{3} / \mathrm{h}$ - Rated power 22 W - Size 2

7F.50.8.xxx. 3100

- Operating voltage (120 or 230) V AC
- Air volume $100 \mathrm{~m}^{3} / \mathrm{h}$
- Rated power 22 W - Size 3
Filter mat (included)

Filter material

Features

Filter Fan for electrical cabinets and enclosures 120 V or 230 V AC versions

- Very low acoustic noise
- Minimal depth within enclosure
- Air volume (14...470) $\mathrm{m}^{3} / \mathrm{h}$ (with Exhaust Filter installed in cabinet) - Air volume (24...630) $\mathrm{m}^{3} / \mathrm{h}$ (free flow)
- Power consumption (4...130) W
- Operating voltage: 120 or 230 V AC $(50 / 60 \mathrm{~Hz})$
- Time-saving installation and maintenance
- Further available versions*: EMC Filter Fan (7F.70) and EMC Exhaust Filter (7F.07) Filter Fan supplied in Reverse flow mode (7F.80)
* Product codes, see pages 6 \& 9

Note:
By reversing the fan motor, the air direction can be changed from "Inlet" Filter Fan mode to "Exhaust" Filter Fan mode ** (except for the types 7F.50.8.xxx.4370, 7F.50.8.xxx. 5500 and 7F.50.8.xxx.5630).
** Supplied in "Inlet" Filter Fan mode (Standard).
Fan data
Air volume (free flow)
Air volume (with exhaust filter installed)
Noise level Life time at $40^{\circ} \mathrm{C}$
Electrical data

7F.50.8.xxx. 4230

- Operating voltage (120 or 230) V AC - Air volume $230 \mathrm{~m}^{3} / \mathrm{h}$ - Rated power 40 W - Size 4

- Operating voltage
(120 or 230) V AC
- Air volume $370 \mathrm{~m}^{3} / \mathrm{h}$
- Rated power 70 W
- Size 4

7F.50.8.xxx. 4370

$\mathrm{m}^{3} / \mathrm{h}$	230	370
$\mathrm{~m} / \mathrm{h}$	180	250
	-53	65

A)
(A)
h

Features

Filter Fan for electrical cabinets and enclosures 120 V or 230 V AC versions

- Very low acoustic noise
- Minimal depth within enclosure
- Air volume (14...470) $\mathrm{m}^{3} / \mathrm{h}$
(with Exhaust Filter installed in cabinet)
- Air volume (24...630) m³/h (free flow)
- Power consumption (4...130) W
- Operating voltage: 120 or 230 V AC $(50 / 60 \mathrm{~Hz})$
- Time-saving installation and maintenance
- Further available versions*: EMC Filter Fan (7F.70) and EMC Exhaust Filter (7F.07)
Filter Fan supplied in Reverse flow mode (7F.80)
* Product codes, see pages 6 \& 9

Note:
By reversing the fan motor, the air direction can be changed from "Inlet" Filter Fan mode to "Exhaust" Filter Fan mode ** (except for the types 7F.50.8.xxx.4370, 7F.50.8.xxx. 5500 and 7F.50.8.xxx.5630).
** Supplied in "Inlet" Filter Fan mode (Standard).
Fan data
Air volume (free flow)
$\begin{array}{lr}\text { Air volume (with exhaust filter installed) } & \mathrm{m}^{3} / \mathrm{h} \\ \text { Noise level } & \mathrm{dB}(\mathrm{A})\end{array}$

Noise level	$d B(A)$
Life time at $40^{\circ} \mathrm{C}$	h

Electrical data

Features

Filter Fan for electrical cabinets and enclosures 24 V DC versions

- Very low acoustic noise
- Minimal depth within enclosure
- Air volume (14...470) $\mathrm{m}^{3} / \mathrm{h}$
(with Exhaust Filter installed in cabinet)
- Air volume (24...630) $\mathrm{m}^{3} / \mathrm{h}$ (free flow)
- Power consumption (4...130) W
- Operating voltage: 24 V DC
- Time-saving installation and maintenance
- Further available versions*: EMC Filter Fan (7F.70) and EMC Exhaust Filter (7F.07) Filter Fan supplied in Reverse flow mode (7F.80)
* Product codes, see pages 6 \& 9

Note:
By reversing the fan motor, the air direction can be changed from "Inlet" Filter Fan mode to "Exhaust" Filter Fan mode ** (except for the types 7F.50.8.xxx.4370, 7F.50.8.xxx. 5500 and 7F.50.8.xxx.5630).

7F.50.9.024. 1020

- Operating voltage 24 V DC
- Air volume $24 \mathrm{~m}^{3} / \mathrm{h}$
- Rated power 4 W
- Size 1

7F.50.9.024.2055

- Operating voltage 24 V DC - Air volume $55 \mathrm{~m}^{3} / \mathrm{h}$ - Rated power 9 W - Size 2

Features

Filter Fan for electrical cabinets and enclosures 24 V DC versions

- Very low acoustic noise
- Minimal depth within enclosure
- Air volume (14...470) $\mathrm{m}^{3} / \mathrm{h}$ (with Exhaust Filter installed in cabinet)
- Air volume (24...630) $\mathrm{m}^{3} / \mathrm{h}$ (free flow)
- Power consumption (4...130) W
- Operating voltage: 24 V DC
- Time-saving installation and maintenance
- Further available versions*:

EMC Filter Fan (7F.70) and
EMC Exhaust Filter (7F.07)
Filter Fan supplied in Reverse flow mode (7F.80)

* Product codes, see pages 6 \& 9

Note:
By reversing the fan motor, the air direction can be changed from "Inlet" Filter Fan mode to "Exhaust" Filter Fan mode ** (except for the types 7F.50.8.xxx.4370, 7F.50.8.xxx. 5500 and 7F.50.8.xxx.5630).
** Supplied in "Inlet" Filter Fan mode (Standard).
Fan data

Ordering information

Example: Series 7F, Filter Fan for mounting in sidewalls, operating voltage 230 V AC, size 1, air volume $24 \mathrm{~m}^{3} / \mathrm{h}$.

$020=24 \mathrm{~m}^{3} / \mathrm{h}$
$055=55 \mathrm{~m}^{3} / \mathrm{h}$
$100=100 \mathrm{~m}^{3} / \mathrm{h}$
$230=230 \mathrm{~m}^{3} / \mathrm{h}$
$370=370 \mathrm{~m}^{3} / \mathrm{h}$ $500=500 \mathrm{~m}^{3} / \mathrm{h}$
$630=630 \mathrm{~m}^{3} / \mathrm{h}$

Filter Fans - All versions

Standard versions	EMC versions	Reverse flow versions	
7F.50.8.120.1020	-	7F.80.8.120.1020	Filter Fan, Size 1
7F.50.8.120.2055	-	7F.80.8.120.2055	Filter Fan, Size 2
7F.50.8.120.3100	-	7F.80.8.120.3100	Filter Fan, Size 3
7F.50.8.120.4230	-	7F.80.8.120.4230	Filter Fan, Size 4
7F.50.8.120.4370	-	7F.80.8.120.4370	Filter Fan, Size 4
7F.50.8.120.5500	-	7F.80.8.120.5500	Filter Fan, Size 5
7F.50.8.120.5630	-	-	Filter Fan, Size 5
7F.50.8.230.1020	7F.70.8.230.1020	7F.80.8.230.1020	Filter Fan, Size 1
7F.50.8.230.2055	7F.70.8.230.2055	7F.80.8.230.2055	Filter Fan, Size 2
7F.50.8.230.3100	7F.70.8.230.3100	7F.80.8.230.3100	Filter Fan, Size 3
7F.50.8.230.4230	7F.70.8.230.4230	7F.80.8.230.4230	Filter Fan, Size 4
7F.50.8.230.4370	7F.70.8.230.4370	7F.80.8.230.4370	Filter Fan, Size 4
7F.50.8.230.5500	7F.70.8.230.5500	7F.80.8.230.5500	Filter Fan, Size 5
7F.50.8.230.5630	7F.70.8.230.5630	-	Filter Fan, Size 5
7F.50.9.024.1020	7F.70.9.024.1020	7F.80.9.024.1020	Filter Fan, Size 1
7F.50.9.024.2055	7F.70.9.024.2055	7F.80.9.024.2055	Filter Fan, Size 2
7F.50.9.024.3100	7F.70.9.024.3100	7F.80.9.024.3100	Filter Fan, Size 3
7F.50.9.024.4230	7F.70.9.024.4230	7F.80.9.024.4230	Filter Fan, Size 4

Note:

The technical features (air volume, dimensions and electrical parameters) for the Standard Filter Fans (7F.50), the EMC Filter Fans (7F.70) and the Reverse flow versions (7F.80) - are exactly the same.
7F.50.8.120.5630 has no UL approval. Other versions on request.

Features

Exhaust Filter

The size of the Exhaust Filter should match the size of the Filter Fan to achieve the best ventilation within the cabinet

- Minimum depth within enclosure
- Time-saving installation and maintenance
- Further available versions*: - EMC Exhaust Filters (7F.07)
* Product codes, see page 9

Features

Exhaust Filter

The size of the Exhaust Filter should match the size of the Filter Fan to achieve the best ventilation within the cabinet

- Minimum depth within enclosure
- Time-saving installation and maintenance
- Further available versions*: EMC Exhaust Filters (7F.07)
* Product codes, see page 9

Ordering information

Example: Series 7F, Exhaust Filter for mounting in sidewalls, size 1.

Enclosure cut-out
$1000=$ Size $1(92+0.5 \times 92+0.5) \mathrm{mm}$ $2000=$ Size $2(125+1.0 \times 125+1.0) \mathrm{mm}$ $3000=$ Size $3(177+1.0 \times 177+1.0) \mathrm{mm}$ $4000=$ Size $4(224+1.0 \times 224+1.0) \mathrm{mm}$ $5000=$ Size $5(291+1.0 \times 291+1.0) \mathrm{mm}$

Exhaust Filter - All versions

Standard-versions	EMC - versions	
7F.05.0.000.1000	7F.07.0.000.1000	Exhaust Filter, Size 1
7F.05.0.000.2000	7F.07.0.000.2000	Exhaust Filter, Size 2
7F.05.0.000.3000	7F.07.0.000.3000	Exhaust Filter, Size 3
7F.05.0.000.4000	7F.07.0.000.4000	Exhaust Filter, Size 4
7F.05.0.000.5000	7F.07.0.000.5000	Exhaust Filter, Size 5

Standard-Filter Fan	Standard-Exhaust Filter	EMC-Filter Fan	EMC-Exhaust Filter	Filter mat	Size
7F.50.8.xxx. 1020	7F.05.0.000.1000	7F.70.8.230.1020	7F.07.0.000.1000	07F. 15	1
7F.50.8.xxx. 2055	7F.05.0.000.2000	7F.70.8.230.2055	7F.07.0.000.2000	07F. 25	2
7F.50.8.xxx. 3100	7F.05.0.000.3000	7F.70.8.230.3100	7F.07.0.000.3000	07F. 35	3
7F.50.8.xxx. 4230	7F.05.0.000.4000	7F.70.8.230.4230	7F.07.0.000.4000	07F. 45	4
7F.50.8.xxx. 4370	7F.05.0.000.4000	7F.70.8.230.4370	7F.07.0.000.4000	07F. 45	4
7F.50.8.xxx. 5500	7F.05.0.000.5000	7F.70.8.230.5500	7F.07.0.000.5000	07F. 55	5
7F.50.8.xxx. 5630	7F.05.0.000.5000	7F.70.8.230.5630	7F.07.0.000.5000	07F. 55	5
7F.50.9.024.1020	7F.05.0.000.1000	7F.70.9.024.1020	7F.07.0.000.1000	07F. 15	1
7F.50.9.024.2055	7F.05.0.000.2000	7F.70.9.024.2055	7F.07.0.000.2000	07F. 25	2
7F.50.9.024.3100	7F.05.0.000.3000	7F.70.9.024.3100	7F.07.0.000.3000	07F. 35	3
7F.50.9.024.4230	7F.05.0.000.4000	7F.70.9.024.4230	7F.07.0.000.4000	07F. 45	4

Spare Filter mats	$07 F .15$	$07 F .25$	$07 F .35$	$07 F .45$	$07 F .55$
Protection category			IP54		

Pressure compensation device, for pressure compensation in closed cabinets or enclosures	$07 F .80$	
Air interface area	cm^{2}	7
Mounting	Nm	PG 29 thread with union nut
Torque		5 (max. 10)
Material	mm	plastic according to UL94-V0
Dimensions (diameter / depth)		$65.5 / 30.5$
Mounting position	${ }^{\circ} \mathrm{C}$	upper part of cabinet sidewalls
Ambient temperature		$-45 \ldots+70$
Protection category		IP55

Unit package contains 2 pressure compensation devices

Mounting instructions for Filter Fans and Exhaust Filters

Mounting arrangement of Filter Fans and Exhaust Filters

Drilling template and mounting cut-outs for Filter Fans and Exhaust Filter

Size 1
Size 2
Size 3
Size 4
Size 5

Mounting and maintenance

1. Make the panel cut-out according to the size of the Filter Fan or Exhaust Filter in the sidewall of the cabinet as appropriate.

A template of the panel cut-out is included in the packaging of the Filter Fan or Exhaust Filter.
2. Make the electrical connection.
3. Mount by simply snapping the side-located lugs on the Filter Fan or Exhaust Filter into the panel cut-out (without using screws for sidewall thickness of 1,2 ...2,4 mm).
At other thickness it is recommended to mount the Filter Fan by the screws supplied (for size 1, the template shows the mounting cut-out only).
4. When screws are needed for the mounting, remove the plastic cover and fix the Filter Fan with the 4 screws supplied.

Then insert the filter mat and snap the plastic cover to the mounting frame.
5. During maintenance or when replacing the filter mat remove the plastic cover, replace the filter mat and snap on the plastic cover.

Fan selection

Example

First, estimate the power dissipated within the cabinet. Then calculate the maximum difference between the internal and external temperature (green lines) by considering the difference between the maximum permitted internal temperature (as dictated by the temperature rating of the enclosed components, or specification) and the maximum temperature expected outside the cabinet.
The projection onto the X axis, of the intersection between the power (watts) and the appropriate green line, corresponds to the air flow rate in $\mathrm{m}^{3} / \mathrm{h}$ required to meet the maximum internal temperature limit. Extending this line vertically to intersect with the blue horizontal lines, indicates the most appropriate model of 7F fan to be fitted to the cabinet to provide the requisite air flow.
The example above considers a cabinet with an internal thermal power dissipation of 500 W , and assumes the maximum temperature difference between the inside and the outside of the cabinet to be 20K. The required air flow can be seen to be a little less than $80 \mathrm{~m}^{3} / \mathrm{h}$.
It is suggested that this is increased by 10% to allow for the affects of a dirty filter.
And so, it can be seen that models of the 7 F with $100 \mathrm{~m}^{3} / \mathrm{h}$ flow rate will provide the proper dissipation of heat under these circumstances.

Application notes

Filter Fan

The ball-bearing axial fan housing is made of aluminium and the rotor is made of plastic or metal (depending on the type).

Filter classes

Within DIN 24185 are specified 9 filter classes, categorised into 4 coarse dust filters und 5 fine dust filters.
The coarse dust filters (EU1-EU4) are able to filter particles $>10 \mu \mathrm{~m}$ and the fine dust filters (EU5 - EU9) are able to filter particles from (1...10) $\mu \mathrm{m}$.

Filter classes	Example of particle	Particle size
EU1 - EU4	Textile fibers, hair, sand, pollen, spores, insects, cement dust	$>10 \mu \mathrm{~m}$
EU5 - EU9	Pollen, spores, cement dust, tobacco smoke, oil smoke, soot	$(1 \ldots 10) \mu \mathrm{m}$

Filtering degree (Am)

The degree of filtering (Am) is the percentages of dust, by weight, that is caught and retained by the filter.

Filter mats

The quality of these filters mats has been independently tested, according DIN 24185 and branded after passing the test. The filter mats are to filter class EU3 and have an average filtering degree of (80...90) \%.

Filter material

The filter material consists of a synthetic fiber with progressive construction which is moisture-resistant to $100 \% \mathrm{RH}$ and temperature resistant to $+100^{\circ} \mathrm{C}$.
According to the strict requirements of fire class F1, DIN 53438, these filter mats are self extinguishing.

Progressive construction at filter mats

The individual fibers of these filter mats are bonded by a special process to provide a progressive construction where the fiber size and spacing varies through the thickness of the filter mat.
This means that coarse dust particles are caught early and fine dust later through the thickness of the mat. In this way the entire depth of the filter mat is used.

Flammability class of the housing and the cover

The plastic materials used comply with flammability class V-0, according UL94.

EMC Filter Fans and EMC Exhaust Filters

The plastic mounting frame of the EMC Filter Fans (7F.70) and EMC Exhaust Filters (7F.07) are sprayed with a conductive (metallic) paint.
The gasket located on the mounting frame, for sealing the Filter Fan or Exhaust Filter in the cabinet is also metalised.
In addition; located at the EMC Filter Fan between the metalized mounting frame and the filter mat, is a metal grid.
Therefore, between the metal parts of the Filter Fan and the metal cabinet, there is a conductive connection.

Filter Fan in "reverse flow" version

As supplied, the standard Filter Fan is in "Draw-In"- mode, which means that cool air is filtered and drawn into the cabinet. In some cases it may be required that the warm air is blown out of the cabinet. In which case it is possible to get Filter Fans in "Exhaust Filter" mode version (7F.80).

Mounting of the pressure compensation device

In sealed cabinets and enclosures the internal pressure can vary due to changes in temperature. The pressure compensation device (07F.80) will relieve this internal/external pressure differential whilst maintaining a high level of protection - preventing the ingress of dust and moisture into the cabinet or the enclosure. The pressure compensation device is approved for use in cabinets and enclosures according to DIN EN 62208.

Drill a hole $\varnothing 37+1.0 \mathrm{~mm}$ in the housing wall and fix the pressure compensation device with the accompanying nut. It is important to ensure that the sealing ring is located on the outside. To ensure optimum pressure balance, it is recommended to fit 2 pressure compansation device at the upper sides of the cabinet or enclosure.

Features

Multi-function and mono-function timer range
 80.01 - Multi-function \& multi-voltage 80.11 - On-delay, multi-voltage

- 17.5 mm wide
- Six time scales from 0.1 s to 24 h
- High input/output isolation
- 35 mm rail (EN 60715) mount
- "Blade + cross" - both flat blade and cross head screw drivers can be used to adjust the range and function selectors, the timing trimmer, and to disengage the rail mounting clip
- New multi-voltage versions with "PWM clever" technology

FOR UL RATINGS SEE:
"General technical information" page V
For outline drawing see page 6
Contact specification
Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC
Rated load AC1
Rated load AC 15 (230 V AC)
Single phase motor rating (230 VAC) kW

| Breaking capacity DC $: 30 / 110 / 220 \mathrm{~V} \quad \mathrm{~A}$ |
| :--- | ---: |
| Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$ |

Standard contact material

Supply specification

Nominal voltage $\left(U_{N}\right)$	V AC $(50 / 60 \mathrm{~Hz})$
	V DC
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	V AC
	V DC

Technical data

- Multi-voltage
- Multi-function

AI: On-delay
DI: Interval
SW: Symmetrical flasher (starting pulse on)
BE: Off-delay with control signal
CE: On- and off-delay with control signal
DE: Interval with control signal on

Wiring diagram (without control signal)

Wiring diagram (with control signal)
80.11

- Multi-voltage
- Mono-function

AI: On-delay

Wiring diagram (without control signal)

SERIES

80 Series - Modular timers 16 A

Features

Mono-function timer range
80.21 - Interval, multi-voltage
80.41 - Off-delay with control signal, multi-voltage 80.91 - Asymmetrical flasher, multi-voltage

- 17.5 mm wide
- Six time scales from 0.1 s to 24 h
- High input/output isolation
- 35 mm rail (EN 60715) mount
- "Blade + cross" - both flat blade and cross head screw drivers can be used to adjust the range and function selectors, the timing trimmer, and to disengage the rail mounting clip
- New multi-voltage versions with "PWM clever" technology
80.21 / $80.41 / 80.91$

Screw terminal

For UL ratings see:
"General technical information" page V
For outline drawing see page 6
Contact specification

| Contact configuration | |
| :--- | :--- | :--- |
| Rated current/Maximum peak current | A |
| Rated voltage/Maximum switching voltage V AC | |

Rated voltage/Maximum switching voltage V AC
Rated load AC 1

Rated load AC15 (230 V AC)
Single phase motor rating (230 V AC)

Breaking capacity DC1:30/110/220 V A
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Supply specification	
Nominal voltage (UN)	V AC $(50 / 60 \mathrm{~Hz})$
Rated power AC/DC	VADC
Operating range	$\mathrm{VA} \mathrm{Hz}) / \mathrm{W}$

Technical data

Specified time range	(0.1.	min, 11.	. .24)h
Repeatability \%	± 1	± 1	± 1
Recovery time ms	100	100	100
Minimum control impulse ms	-	50	50
Setting accuracy-full range \%	± 5	± 5	± 5
Electrical life at rated load in AC1 cycles	$50 \cdot 10^{3}$	$50 \cdot 10^{3}$	$50 \cdot 10^{3}$
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$	$-10 \ldots+50$	$-10 \ldots+50$
Protection category	IP 20	IP 20	IP 20
Approvals (according to type)			

Features

Multi-function and multi-voltage solid-state output timer

- 17.5 mm wide
- Six time scales from 0.1 s to 24 h
- High input/output isolation
- 35 mm rail (EN 60715) mount
- Multi-voltage output ($24 \ldots 240 \mathrm{~V}$ AC/DC), independent from the input voltage
- "Blade + cross" - both flat blade and cross head screw drivers can be used to adjust the range and function selectors, the timing trimmer, and to disengage the rail mounting clip
- Multi-voltage input with "PWM clever" technology
80.71

Screw terminal

80.71

- Multi-voltage
- Multi-function

AI: On-delay
DI: Interval
SW: Symmetrical flasher (starting pulse on)
BE: Off-delay with control signal
CE: On- and off-delay with control signal
DE: Interval with control signal on

Wiring diagram (without control signal) Wiring diagram
(with control signal)
For outline drawing see page 6

Output circuit

Contact configuration
Rated current

Rated voltage	V AC/DC
Switching voltage range	V AC/DC

Rated load AC15	A
Rated load DC1	A

Minimum switching current	mA
Max. "OFF-state" leakage current	mA

Max. "ON-state" voltage drop	V

Input circuit

Features

Mono-function timer range
80.61 - Power off-delay (True off-delay), multi-voltage
80.82 - Star-delta, multi-voltage

- 17.5 mm wide
- Rotary range selector, and timing trimmer
- Four time scales from 0.05 s to 3 min (type 80.61)
- Six time scales from 0.1 s to 20 min (type 80.82)
- High input/output isolation
- 35 mm rail (EN 60715) mount

80.61 / 80.82
 Screw terminal

For UL ratings see:
"General technical information" page V
For outline drawing see page 6
Contact specification
Contact configuration

$$
\begin{aligned}
& R \\
& R
\end{aligned}
$$

Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage VAC
Rated load AC1

Rated load AC15 (230 V AC)
Single phase motor rating ($230 \mathrm{~V} \mathrm{AC)}$

Breaking capacity DC1:30/110/220 V A

Ordering information

Example: 80 series, modular timers, 1 CO (SPDT) - 16 A, supply rated at ($12 \ldots 240$)V AC/DC.

Technical data

Accessories

Sheet of marker tags, for types 80.82 , plastic, 24 tags, $9 \times 17 \mathrm{~mm}$
020.24
$\begin{array}{ll}\text { Sheet of marker tags, for types } 80.01 / 11 / 21 / 41 / 61 / 71 \text {, plastic, } 72 \text { tags, } 6 \times 12 \mathrm{~mm} & 060.72\end{array}$

Outline drawings
80.01

Screw terminal

80.21

Screw terminal

80.91

Screw terminal

80.61

Screw terminal

80.11

Screw terminal

80.41

Screw terminal

80.71

Screw terminal

80.82

Screw terminal

Functions

$\mathbf{U}=$ Supply voltage	LED*	Supply voltage	NO output contact	Contacts	
				Open	Closed
- = Output contact	-	OFF	Open	15-18	15-16
	-	ON	Open	15-18	15-16
	\ T T T ! !	ON	Open (Timing in Progress)	15-18	15-16
		ON	Closed	15-16	15-18

* The LED on type 80.61 is illuminated only when the supply voltage is applied to the timer; during the timing period the LED is not illuminated.

Without control signal = Start via contact in supply line (A1). Wiring diagram With control signal = Start via contact into control terminal (B1).		
Without control signal	$\begin{aligned} & \text { Type } \\ & 80.0 \\ & 80.7 \end{aligned}$	(AI) On-delay. Apply power to timer. Output contacts transfer after preset time has elapsed. Reset occurs when power is removed. (DI) Interval. Apply power to timer. Output contacts transfer immediately. After the preset time has elapsed, contacts reset. (SW) Symmetrical flasher (starting pulse on). Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ratio is $1: 1$ (time on $=$ time off).
With control signal	$\begin{aligned} & 80.01 \\ & 80.71 \end{aligned}$	(BE) Off-delay with control signal. Power is permenently applied to the timer. The output contacts transfer immediately on closure of the Signal Switch (S). Opening the Signal Switch initiates the preset delay, after which time the output contacts reset. (CE) On - and off-delay with control signal. Power is permenently applied to the timer. Closing the Signal Switch (S) initiates the preset delay, after which time the output contacts transfer. Opening the Signal switch initiates the same preset delay, after which time the output contacts reset. (DE) Interval with control signal on. Power is permenently applied to the timer. On momentary or maintained closure of Signal Switch (S), the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.
	NOTE	The function must be set before energising the timer. e to control an external load, such as another relay coil or timer, connected to the control signal terminal B1.
	$\begin{array}{r} \text { ** } \mathrm{A} \\ \mathrm{~A} \\ \mathrm{~B} \end{array}$	C supply, positive polarity has to be connected to B 1 terminal (according to EN 60204-1). age other than the supply voltage can be applied to the command Start (B 1), example: $\begin{aligned} & 2=230 \mathrm{VAC} \\ & 2=12 \mathrm{VDC} \end{aligned}$

Functions
Wiring diagram

* With DC supply, positive polarity has to be connected to B1 terminal (according to EN 60204-1).
** A voltage other than the supply voltage can be applied to the command Start (B1), example:
$\mathrm{A} 1-\mathrm{A} 2=230 \mathrm{VAC}$
$\mathrm{B} 1-\mathrm{A} 2=12 \mathrm{VDC}$

Features

Multi-function and multi-voltage timer

- One module 17.5 mm wide housing
- Seven functions (4 with supply start and 3 with control signal)
- Additional Reset function
- Six time ranges from 0.1 s to 10 h
- 35 mm rail (EN 60715) mounting

81.01

Screw terminal

Wiring diagram (control signal)

Setting accuracy-full range \%	± 5
Electrical life at rated load in AC1 cycles	$100 \cdot 10^{3}$
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$
Protection category	IP 20
Approvals (according to type)	c EHL

Ordering information
Example: 81 series, modular timer multi-voltage, 1 CO (SPDT) - 16 A , supply rated at ($12 \ldots 230$)V AC/DC.

Technical data

EMC specifications

		Reference standard	
Type of test Electrostatic discharge		EN 61000-4-2	4 kV
		EN 61000-4-2	8 kV
Radio-frequency electromagnetic field ($80 \div 1,000 \mathrm{MHz}$)		EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
Fast transients (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals		EN 61000-4-4	4 kV
Surges ($1.2 / 50 \mu \mathrm{~s}$) on Supply terminals		EN 61000-4-5	4 kV
		EN 61000-4-5	4 kV
Radio-frequency common mode ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals		EN 61000-4-6	10 V
Radiated and conducted emission		EN 55022	class A
Other data			
Current absorption on signal control (B1)		$<1 \mathrm{~mA}(\mathrm{~S}-\mathrm{X})$	$<1 \mathrm{~mA}(\mathrm{R}-\mathrm{X})$
Voltage potential on the input terminal R - X and S -X		Not galvanic separation from the supply voltage on A1-A2	
Power lost to the environment	W	1.3	
	W	3.2	
(23) Screw torque	Nm	0.8	
Max. wire size		solid cable	stranded cable
	mm^{2}	1x6/2x4	$1 \times 4 / 2 \times 2.5$
	AWG	$1 \times 10 / 2 \times 12$	$1 \times 12 / 2 \times 14$

Time range setting

(0.1...1)s	(1...10)s	(10...60)s	(1...10)min	(10...60)min	(1...10)h
1	1	1	1	1	1
2	2	2	2	2	2
3	3	3	3	3	3
4	4	4	4		
5	5	5	5	5	5
6	6			6	

NOTE: time range and function must be set before energising the timer.

Functions

Supply Start = Start via contact in supply line (AI).
Control signal $=$ Start via contact into control terminal (X-S).

Wiring diagram

Accessories

019.01

060.72

Identification tag, for type 81.01, plastic, 1 tag, $17 \times 25.5 \mathrm{~mm}$	019.01

Sheet of marker tags, for type 81.01 , plastic, 72 tags, $6 \times 12 \mathrm{~mm}$ 060.72

SERIES

83 Series - Modular timers 16 A

Features

Mono-function timer range

83.11-ON-delay, multi-voltage
83.21 - Interval, multi-voltage
83.41 - Off-delay with control signal, multi-voltage

- 1 Pole
- 22.5 mm wide
- Eight time scales from 0.05 s to 10 days
- High input/output isolation
- Wide supply range (24...240)V AC/DC
- 35 mm rail (EN 60715) mount
- "Blade + cross" - both flat blade and cross head screw drivers can be used to adjust the range and function selectors, the timing trimmer, and to disengage the rail mounting clip
- Multi-voltage versions with "PWM clever" technology

- Multi-voltage
- Mono-function

Al: On-delay

For outline drawing see page 5
Contact specification

Contact configuration	
Rated current/Maximum peak current	A
Rated voltage/Maximum switching voltage V AC	

Rated voltage/Maximum switching voltage V AC

Rated load AC1	VA
Rated load AC15	

Single phase motor rating (230 V AC)	kW
Breaking capacity DC1: $30 / 110 / 220 \mathrm{~V}$	A

Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	

Supply specification	
Nominal voltage $\left(U_{\mathrm{N}}\right)$	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
	V DC
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	V AC
	VDC

Technical data

Specified time range	(0.05...1)s, (0.5...)min	(0.05...1)d,
Repeatability \%	± 1	± 1	± 1
Recovery time ms	200	200	200
Minimum control impulse ms	-	-	50
Setting accuracy-full range \%	± 5	± 5	± 5
Electrical life at rated load in AC1 cycles	$50 \cdot 10^{3}$	$50 \cdot 10^{3}$	$50 \cdot 10^{3}$
Ambient temperature range ${ }^{\circ} \mathrm{C}$	-20...+60	-20...+60	-20...+60
Protection category	IP 20	IP 20	IP 20
Approvals (according to type)			

Ordering information

Example: 83 series, modular timers, 1 CO (SPDT) - 16 A, supply rated at (24 $\ldots 240$)V AC/DC.

Technical data

Insulation					
Dielectric strength	between input and output circuit V AC	4,000			
	between open contacts V	1,000			
Insulation (1.2/50 μ s) between input and output kV		6			
EMC specifications					
Type of test		Reference standard	83.01/02/52/11/21/41/82/91		83.62
Electrostatic discharge	contact discharge		4 kV		4 kV
	air discharge	$\begin{aligned} & \text { EN 61000-4-2 } \\ & \text { EN 61000-4-2 } \end{aligned}$	8 kV		8 kV
Radio-frequency electromagnetic field	$(80 \div 1,000 \mathrm{MHz})$	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$		$10 \mathrm{~V} / \mathrm{m}$
	(1,000 $\div 2,700 \mathrm{MHz}$)	EN 61000-4-3	$3 \mathrm{~V} / \mathrm{m}$		$3 \mathrm{~V} / \mathrm{m}$
Fast transients (burst) ($5-50 \mathrm{~ns}, 5$ and 100 kHz)	on Supply terminals	EN 61000-4-4	7 kV		6 kV
	on control signal terminal (B1)	EN 61000-4-4	7 kV		6 kV
Surges (1.2/50 μ s) on Supply terminals	common mode	EN 61000-4-5	6 kV		6 kV
	differential mode	EN 61000-4-5	6 kV		4 kV
on control signal terminal (B1)	common mode	EN 61000-4-5	6 kV		6 kV
	differential mode	EN 61000-4-5	4 kV		4 kV
Radio-frequency common mode on Supply terminals	$(0.15 \div 80 \mathrm{MHz}$)	EN 61000-4-6	10 V		10 V
	($80 \div 230 \mathrm{MHz}$)	EN 61000-4-6	10 V		10 V
Radiated and conducted emission		EN 55022	class A		class A
Other data					
Current absorption on control signal (B1)		$<1 \mathrm{~mA}$			
- max cable length (capacity of $\leq 10 \mathrm{nF} / 100 \mathrm{~m}$)		150 m			
- when applying a control signal to B 1 , which is different from the supply voltage at A1/A2		B 1 is isolated from A 1 and A 2 by an opto-coupler, and can therefore be operated at a voltage other than the supply voltage. If using a control signal of between (24... 48)V DC and a supply voltage of $(24 \ldots 240) V$ AC, ensure that the signal - is connected to A 2 and the + is applied to B 1 , and that L is applied to B 1 and N to A 2 .			
External potentiometer for 83.02/52		Use a $10 \mathrm{k} \Omega / \geq 0,25 \mathrm{~W}$ linear potentiometer. Maximum cable length 10 m . When using an external potentiometer, the timer automatically use its setting in place of the internal setting. Consider the voltage potential at the potentiometer to be the same as the timer supply voltage.			
Power lost to the environment	without contact current W	1.4			
	with rated current W	3.2			
(2)2 Screw torque	Nm	0.8			
Max. wire size	mm^{2}	solid cable		stranded cable	
		1×6/2x4		$1 \times 4 / 2 \times 2.5$	
	AWG	$1 \times 10 / 2 \times 12$		1×12/2x14	

Outline drawings

83.01

Screw terminal

83.11

Screw terminal

83.41

Screw terminal

83.82

Screw terminal

83.02/52

Screw terminal

83.21

Screw terminal
(1)

83.62

Screw terminal
0

83.91

Screw terminal
0

Accessories

060.72

Sheet of marker tags, for types $83.01 / 11 / 21 / 41 / 62 / 82$, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$

Functions

LED*	Supply voltage	NO output contact	Contacts	
			Open	Closed
	OFF	Open	$\begin{aligned} & 15-18 \\ & 25-28 \end{aligned}$	$\begin{aligned} & 15-16 \\ & 25-26 \end{aligned}$
- \| -	ON	Open	$\begin{aligned} & 15-18 \\ & 25-28 \end{aligned}$	$\begin{aligned} & 15-16 \\ & 25-26 \end{aligned}$
\square	ON	Open (Timing in Progress)	$\begin{aligned} & 15-18 \\ & 25-28 \end{aligned}$	$\begin{aligned} & 15-16 \\ & 25-26 \end{aligned}$
	ON	Closed	$\begin{aligned} & 15-16 \\ & 25-26 \end{aligned}$	$\begin{aligned} & 15-18 \\ & 25-28 \end{aligned}$

* The LED on type 83.62 is illuminated when supply voltage is supplied to timer.

- Possible to control an external load, such as another relay coil or timer, connected to the control signal terminal B1.

[^19]* With DC supply, positive polarity has to be connected to B1 terminal (according to EN 60204-1).

Functions

Wiring diagram

NOTE: The timing function must be set when the timer is de-energised. Or for the $83.02 / 52$, when the contact mode selector is in the OFF position.
83.02 type
Contact mode selector

Functions
Wiring diagram

83.52 type

Contact mode selector
2 timed contacts

1 timed +
1 instantaneous contact

OFF
OFF

Functions with control signal and pause signal (example: BEp)

Both output contacts $\overline{[15-18}$ and 25(21)-28(24)] stay permanently open

The output contact 15-18 follows the timing function The output contact 21-24 follows the control signal (S)

The output contact $15-18$ follows the timing function. The output contact 21-24 is always open, unless during the pause, when is closed

Functions

\begin{tabular}{|c|c|c|c|}
\hline \& \multicolumn{2}{|r|}{\(\mathbf{U}=\) Supply voltage} \& - = Output contact \\
\hline \begin{tabular}{l}
Mono-function \\
without control signal \\
83.82
\end{tabular} \& Type
83.11

83.21

83.62

83.82 \& \& | (AI) On-delay. |
| :--- |
| Apply power to timer. Output contacts transfer after preset time has elapsed. Reset occurs when power is removed. |
| (DI) Interval. |
| Apply power to timer. Output contacts transfer immediately. After the preset time has elapsed, contacts reset. |
| (BI) Power off-delay (True off-delay). |
| Apply power to timer (minimum 500 ms). Output contacts transfer immediately. Removal of power initiates the preset delay, after which time the output contacts reset. |
| (SD) Star-delta. |
| Apply power to timer. The star contact (λ) closes immediately. After preset delay has elapsed the star contact (λ) resets. After a further time (settable from 0.05 s to 1 s) the delta contact (Δ) closes and remains in that position, until reset on power off. |

\hline with control signal (S) \& 83.41 \& \& | E) Off-delay with control signal. |
| :--- |
| wer is permenently applied to the timer. e output contacts transfer immediately on closure of the ntrol signal (S). Opening the control signal initiates the eset delay, after which time the output contacts reset. |

\hline | Asymmetrical recycler without control signal |
| :--- |
| Z1-Z2 open: (LI) function Z1-Z2 linked: (PI) function |
| with control signal |
| Z1-Z2 open: (LE) function Z1-Z2 linked: (PE) function | \& 83.91 \& \& | (LI) Asymmetrical flasher (starting pulse on)- (Z1-Z2 open). Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ON and OFF times are independently adjustable. |
| :--- |
| (PI) Asymmetrical flasher (starting pulse off) - (Z1-Z2 linked). Apply power to timer. Output contacts transfer after time Tl has elapsed and cycle between OFF and ON for as long as power is applied. The ON and OFF times are independently adjustable. |
| (LE) Asymmetrical flasher (starting pulse on) with control signal - (Z1-Z2 open). |
| Power is permenently applied to the timer. Closing control signal (S) causes the output contacts to transfer immediately and cycle between ON and OFF, until opened. |
| (PE) Asymmetrical flasher (starting pulse off) with control signal - (Z1-Z2 linked). |
| Power is permenently applied to the timer. |
| Closing the control signal (S) initiates delay Tl after which the output contacts transfer and continue to cycle between OFF and ON , until the control signal is opened. |

\hline
\end{tabular}

Features

Plug-in timer
 85.02-2 Pole 10 A
 85.03-3 Pole 10 A
 85.04-4 Pole 7 A

- Multifunctions
- Seven time scales, from 0.05 s to 100 h
- 94 series sockets

DI: Interval

For Ul ratings see:
"General technical information" page V
Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load AC1 VA

Rated load AC $15(230 \mathrm{~V} \mathrm{AC})$	VA
Single phase motor rating $(230 \mathrm{~V} \mathrm{AC})$	kW

$\begin{array}{lr}\text { Breaking capacity DC }: 30 / 110 / 220 \mathrm{~V} \quad \mathrm{~A} \\ \text { Minimum switching load } & \mathrm{mW}(\mathrm{V} / \mathrm{mA})\end{array}$
$\begin{array}{ll}\text { Minimum switching load } & \mathrm{mW}(\mathrm{V} / \mathrm{mA}) \\ \text { Standard contact material } & \end{array}$

Supply specification	
Nominal voltage $\left(U_{N}\right)$	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
Rated power AC/DC	$\mathrm{V} \mathrm{AC}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC

Technical data

Specified time range

- 2 pole, 10 A
- AC/DC supply non polarized - Plug-in for use with 94 series sockets

Al: On-delay
SW: Symmetrical flasher (starting pulse on)

- 3 pole, 10 A
- AC/DC supply non polarized
- Plug-in for use with 94 series sockets

AI: On-delay
DI: Interval
SW: Symmetrical flasher (starting pulse on)

GI: Pulse delayed

GI: Pulse delayed

Wiring diagram (without control signal)

2 CO (DPDT)
$10 / 20$
$250 / 400$

GI:

Wiring diagram (without control signal)
85.04

- 4 pole, 7 A
- AC/DC supply non polarized - Plug-in for use with 94 series sockets

Al: On-delay
DI: Interval
SW: Symmetrical flasher (starting pulse on)
GI: Pulse delayed

Wiring diagram (without control signal)

H

Ordering information
Example: 85 series timer, 4 CO (4PDT), 24 V AC/DC supply voltage, AI, DI, GI, SW functions.

Technical data

Insulation				
Dielectric strength		85.02, 85.03		85.04
between input and output circuit	$V A C$	2,000		2,000
between open contacts	\checkmark AC	1,000		1,000
between adjacent contacts	V AC	2,000		1,550
Insulation (1.2/50 $\mu \mathrm{s}$) between input and output	kV	6		4
EMC specifications				
Type of test		Reference standard		
Electrostatic discharge		EN 61000-4-2		n.a.
		EN 61000-4-2		$8 \text { kV }$
Radio-frequency electromagnetic field ($80 \div 1,000 \mathrm{MHz}$)		EN 61000-4-3		$15 \mathrm{~V} / \mathrm{m}$
Fast transients (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals		EN 61000-4-4		4 kV
Surges (1.2/50 μ s) on common mode		EN 61000-4-5		4 kV
Supply terminals differential mode		EN 61000-4-5		2 kV
Radio-frequency common mode ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals		EN 61000-4-6		10 V
Power-frequency (50 Hz)		EN 61000-4-8		$30 \mathrm{~A} / \mathrm{m}$
Radiated and conducted emission		EN 55022		class B
Other data				
Power lost to the environment	W	1.6		
	W	3.7 (85.02)	4.7 (85.03)	3.6 (85.04)

Times scales

NOTE: time scales and functions must be set before energising the timer.

Functions

$\mathbf{U}=$| Supply |
| :---: |
| voltage |

$=$| Output |
| :---: |
| contact |

LED	Supply voltage	NO (SPDT-NO) output contact	Contacts	
			Open	Closed
	OFF	Open	x $1-\mathrm{x} 4$	x $1-x 2$
	ON	Open	x $1-\mathrm{x} 4$	$x 1-x 2$
	ON	Open (Timing in Progress)	x $1-\mathrm{x} 4$	x 1 - x2
	ON	Closed	$x 1-x 2$	x $1-x 4$

Approvals (according to type):
C \mathcal{C} © FH ©
(16) ${ }^{(7)}$

Screw terminal (Box clamp) socket panel or 35 mm rail (EN 60715) mount	$\begin{aligned} & 94.02 \\ & \text { Blue } \end{aligned}$	$94.02 .0$ Black	$\begin{aligned} & 94.03 \\ & \text { Blue } \end{aligned}$	$94.03 .0$ Black	$\begin{aligned} & 94.04 \\ & \text { Blue } \end{aligned}$	$94.04 .0$ Black
For timer type	85.02		85.03		85.04	
Accessories						
Metal retaining clip (supplied with timer)	094.81					
6-way jumper link	094.06	094.06.0	094.06	094.06.0	094.06	094.06.0
Identification tag	094.00.4					
Technical data						
Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$					
Dielectric strength	2 kV AC					
Protection category	IP 20					
Ambient temperature ${ }^{\circ} \mathrm{C}$	-40...+70					
(24)3 Screw torque Nm	0.5					
Wire strip length mm	8					
Max. wire size for 94.02, 94.03 and 94.04 sockets	solid wire			stranded wire		
mm^{2}	$1 \times 6 / 2 \times 2.5$			$1 \times 4 / 2 \times 2.5$		
AWG	$1 \times 10 / 2 \times 14$			$1 \times 12 / 2 \times 14$		

6-way jumper link for $94.02,94.03$ and 94.04 sockets

094.06 (blue)
094.06.0 (black)

Rated values
10 A - 250 V

Approvals (according to type):
C \in © FHE ©
${ }_{c}{ }^{\circ} \mathrm{N}_{\text {us }}^{\circ}$

Screwless terminal socket 35 mm rail (EN 60715) mount	94.54 (blue)	
For timer type	85.02, 85.04	
Accessories		
Metal retaining clip	094.81	
6-way jumper link	094.56	
Technical data		
Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$	
Dielectric strength	2 kV AC	
Protection category	IP 20	
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$	
Wire strip length mm	10	
Max. wire size for 94.54 socket	solid wire	stranded wire
mm^{2}	2x(0.2...1.5)	$2 \times(0.2 \ldots 1.5)$
AWG	$2 \times(24 \ldots 14)$	$2 \times(24 \ldots 14)$

Approvals
(according to type):

Approvals
(according to type):

C \in © ll E[© © ${ }^{\circ}{ }^{\circ}$ us

Screw terminal (Plate clamp) socket panel or 35 mm rail (EN 60715) mount		94.72 Blue	$94.72 .0$ Black	94.73 Blue	$94.73 .0$ Black	$\begin{array}{\|l} 94.74 \\ \text { Blue } \end{array}$	94.74.0 Black
For timer type		85.02		85.03		85.02	. 04
Accessories							
Metal retaining clip (supplied with timer)		094.81					
Screw terminal socket panel or 35 mm rail (EN 60715) mount		$\begin{aligned} & 94.82 \\ & \text { Blue } \end{aligned}$			94.82.0		
For timer type		85.02			85.02		
Accessories							
Metal retaining clip (supplied with timer)		094.81					
Technical data							
Rated values		$10 \mathrm{~A}-250 \mathrm{~V}$					
Dielectric strength		2 kV AC					
Protection category		IP 20					
Ambient temperature	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$					
(72) Screw torque	Nm	0.5					
Wire strip length	mm	$8(94.72,94.73,94.74)$			9 (94.82)		
Max. wire size for 94.72, 94.73, 94.74		solid wire			stranded wire		
and 94.82 sockets	mm^{2}	$1 \times 2.5 / 2 \times 1.5$			$1 \times 2.5 / 2 \times 1.5$		
	AWG	$1 \times 14 / 2 \times 16$			$1 \times 14 / 2 \times 16$		

94.72

H

6-way jumper link for 94.82.3,94.84.3 and 94.84.2 sockets	094.06 (blue)	094.06 .0 (black)
Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$	

SERIES

94 Series - Sockets and accessories for 85 series timers

 (according to type):

Rated values		$10 \mathrm{~A}-250 \mathrm{~V}$	
Dielectric strength		2 kV AC	
Protection category		IP 20	
Ambient temperature	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$	
(193) Screw torque	Nm	0.5	
Wire strip length	mm	8	
Max. wire size for 94.92 .3 and 94.94 .3 sockets		solid wire	stranded wire
	mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
	AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

Features

Timer modules for use in conjunction with relay \& socket.
86.00 - Multi-function \& multi-voltage timer module
86.30 - Bi-function \& multi-voltage timer module

- Timer module type 86.00 for $90,92,96$ series sockets and type 86.30 for $90,92,94$, 95, 96, 97 series sockets
- Wide supply voltage range:
$12 \ldots 240 \mathrm{~V} \mathrm{AC/DC}$ (86.00)
$12 \ldots 24 \mathrm{~V} \mathrm{AC/DC}$ or $230 . . .240 \mathrm{~V} \mathrm{AC}(86.30)$
- LED indicator

Ordering information

Example: 86 series multi-function timer module, (12...240)V AC/DC supply voltage.

Combinations

Number of poles	Relay type	Socket type	Timer module
1	40.31	95.03	86.30
1	40.61	95.05	86.30
1	46.61	$97.01 / 97.51$	86.30
2	$40.52 / 44.52 / 44.62$	$95.05 / 95.55$	86.30
2	46.52	$97.02 / 97.52$	86.30
2	55.32	$94.02 / 94.54$	86.30
2	56.32	96.02	86.30
2	60.12	90.02	$86.00 / 86.30$
2	62.32	92.03	$86.00 / 86.30$
3	55.33	94.03	86.30
3	60.13	90.03	$86.00 / 86.30$
3	62.33	92.03	$86.00 / 86.30$
4	55.34	$94.04 / 94.54$	86.30
4	56.34	96.04	$86.00 / 86.30$

Technical data

EMC specifications			
Type of test	Reference standard	86.00	86.30
Electrostatic discharge	EN 61000-4-2	4 kV	n.a.
	EN 61000-4-2	8 kV	8 kV
Radio-frequency electromagnetic field ($80 \div 1,000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$	$10 \mathrm{~V} / \mathrm{m}$
Fast transients (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals	EN 61000-4-4	4 kV	2 kV
Surges (1.2/50 s) on Supply terminals	EN 61000-4-5	4 kV	2 kV
	EN 61000-4-5	4 kV	1 kV
Radio-frequency common mode ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals	EN 61000-4-6	10 V	10 V
Radiated and conducted emission	EN 55022	class B	class B
Other data	86.00	86.30	
Current absorption on signal control (B1) mA	1	-	
	0.1 (12 V) - 1 (230 V)	0.2	
Power lost to the environment	See 56,60 and 62 series relays	See 40, series re	$55,56,60,62$

Time scales

123	123	123	123	123	123	123
(0.05...1)s	(0.5...10)s	(5...100)s	(0.5...10)min	(5...100)min	(0.5...10)h	(5...100)h

NOTE: Time scales and functions must be set before energising the timer.
To achieve the minimum time setting of 0.05 seconds it is necessary to use one of the functions with control signal. When setting very short times it may be necessary to take into account the operate time of the relay used.

Functions

$\mathbf{U}=$ Supply voltage
$\mathbf{S}=$ Signal switch
工- = Output contact

Without control signal = Start via contact in supply line (A1).
With control signal = Start via contact into control terminal (B1).

Wiring diagram

With control signal

*With DC supply, positive polarity has to be conneted to Bl terminal (according to EN 60204-1).
Switch S should be exclusively used to provide the control signal to terminal B 1 (Do not connect any other load at this point).

Type 86.00

(DI) Interval.

Apply power to timer. Output contacts transfer immediately. After the preset time has elapsed, contacts reset.

(SW) Symmetrical flasher (starting pulse on). Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ratio is $1: 1$ (time on $=$ time off).

(BE) Off-delay with control signal.
Power is permenently applied to the timer.
The output contacts transfer immediately on closure of the Signal Switch (S). Opening the Signal Switch initiates the preset delay, after which time the output contacts reset.

(CE) On- and off-delay with control signal. Power is permenently applied to the timer. Closing the Signal Switch (S) initiates the preset delay, after which time the output contacts transfer. Opening the Signal switch initiates the same preset delay, after which time the output contacts reset.

(DE) Interval with control signal on. Power is permenently applied to the timer. On momentary or maintained closure of Signal Switch (S), the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.
(EE) Interval with control signal off. Power is permenently applied to the timer. On opening of the Signal Switch (S) the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.

(FE) Interval with control signal on and off.
Power is permenently applied to the timer.
Both the opening and closing of the Signal Switch (S) initiates the transfer of the output contacts. In both instances the contacts reset after the delay period has elapsed.

\qquad

Wiring diagram

Type 86.30

(Al) On-delay.

86 Series - Sockets and accessories

Approvals (according to type):

cas ${ }^{\circ}$ us

Screw terminal (Box clamp) socket panel or 35 mm rail (EN 60715) mount For relay type	$\mathbf{9 0 . 0 2}$	$\mathbf{9 0 . 0 2 . 0}$	$\mathbf{9 0 . 0 3}$	90.03 .0
Accessories	Blue	Black	Blue	Black

L 92 - Rated current vs ambient temperature

86 Series - Sockets and accessories

Approvals
(according to type):

Screw terminal (Box clamp) socket
panel or 35 mm rail (EN 60715) mount
For relay type

A

| Metal retaining clip | 094.71 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Plastic retaining and release clip
 (supplied with socket - packaging code SPA) | 094.91 .3 | 094.91 .30 | 094.91 .3 | 094.91 .30 | 094.91 .3 | 094.91 .30 |
| 6-way jumper link | 094.06 | 094.06 .0 | 094.06 | 094.06 .0 | 094.06 | 094.06 .0 |
| Identification tag | | | 094.00 .4 | | | |
| Timer modules | | | 86.30 | | | |
| Sheet of marker tags for retaining and release clip 094.01 | | | 060.72 | | | |

060.72

plastic, 72 tags, $6 \times 12 \mathrm{~mm}$			
Technical data			
Rated values		$10 \mathrm{~A}-250 \mathrm{~V}$	
Dielectric strength		2 kV AC	
Protection category		IP 20	
Ambient temperature	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	
(4ㅏ) Screw torque	Nm	0.5	
Wire strip length	mm	8	
Max. wire size for 94.02/03/04 sockets		solid wire	stranded wire
	mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
	AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

6-way jumper link for 94.02, 94.03 and 94.04 sockets
Rated values
094.06 (blue) 094.06 .0 (black) 10 A - 250 V

86 Series - Sockets and accessories

Approvals
(according to type):

095.01

060.72

Screw terminal (Box clamp) socket panel or 35 mm rail (EN 60715) mount	$\begin{aligned} & 95.03 \\ & \text { Blue } \end{aligned}$	95.03.0 Black	$\begin{aligned} & 95.05 \\ & \text { Blue } \end{aligned}$	$95.05 .0$ Black
For relay type	40.31		40.51/ 52/ 61, 44.52/62	
Accessories				
Metal retaining clip	095.71			
Plastic retaining and release clip (supplied with socket - packaging code SPA)	095.01	095.01 .0	095.01	095.01 .0
8-way jumper link	095.18	095.18 .0	095.18	095.18 .0
Identification tag	095.00.4			
Timer modules	86.30			
Sheet of marker tags for retaining and release clip 095.01 plastic, 72 tags, $6 \times 12 \mathrm{~mm}$	060.72			
Technical data				
Rated values	10 A - 250 V *			
Dielectric strength	$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts			
Protection category	IP 20			
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$			
(다) Screw torque Nm	0.5			
Wire strip length mm	8			
	solid wire		stranded wire	
	$1 \times 6 / 2 \times 2.5$		$1 \times 4 / 2 \times 2.5$	
	$1 \times 10 / 2 \times 14$		$1 \times 12 / 2 \times 14$	

* For currents $>10 \mathrm{~A}$, contact terminals must be connected in parallel (21 with 11,24 with 14,22 with 12).

86 Series - Sockets and accessories

060.72

	Screw terminal socket panel or 35 mm rail (EN 60715) mount		$\begin{aligned} & 97.01 \\ & \text { Blue } \end{aligned}$	$\begin{aligned} & 97.02 \\ & \text { Blue } \end{aligned}$
	For relay type		46.61	46.52
	Accessories			
97.01 Approvals	Plastic retain and eject clip (supplied with socket - packaging code SPA)		097.01	
according to type):	8-way jumper link		095.18 (blue)	095.18 .0 (black)
CE (N) EHL PG (1)	Identification tag		095.00.4	
$\mathrm{c}^{-1 \mathbf{I}_{\text {Us }}}$	Timer modules		86.30	
	Technical data			
	Rated current		$16 \mathrm{~A}-250 \mathrm{~V}$ AC	$8 \mathrm{~A}-250 \mathrm{~V}$ AC
097.01	Dielectric strength		$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts	
	Protection category		IP 20	
	Ambient temperature	${ }^{\circ} \mathrm{C}$	-40... 70 (see diagram L97)	
	(77) Screw torque	Nm	0.8	
	Wire strip length	mm	8	
	Max. wire size for 97.01 and 97.02 sockets		solid wire	stranded wire
		mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
		AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

L 97 - Rated current vs ambient temperature

(for 46.61 relay / 97.01 socket combination)

$97.02+46.52+097.01$
$+86.30$

86 Series - Sockets and accessories

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Features

Multi-voltage and multi-function timer range Front panel or socket mount

- 8 and 11 pin plug-in versions available
- Time scales from 0.05 s to 100 h
- " 1 delayed contact +1 instantaneous contact" version available (type 88.12)
- Front panel mounting fixing included - 90 series sockets

Contact specification

Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC

Rated load AC1	VA
Rated load AC15 (230 V AC)	VA

Single phase motor rating (230 V AC)	kW
Breaking capacity DC 1:30/110/220 V	A

Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

| Standard contact material |
| :--- | :--- |
| Supply specification |

Nominal voltage $\left(U_{N}\right)$	V AC $(50 / 60 \mathrm{~Hz})$
	V DC
Rated power AC/DC	VA $(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	V AC

Technical data

88.02

- Multi-function
- 11 pin
- Plug-in for use with 90 series sockets

Al: On-delay

GI: Pulse delayed
SW: Symmetrical flasher (starting pulse on) without control signal

BE: Off-delay with control signal
CE: On- and off-delay with control signal
DE: Interval with control signal on
with control signal

88.12

- Multi-function
- 8 pin, 2 timed contacts or

1 timed + 1 instantaneous contact - Plug-in for use with 90 series sockets

Al a: On-delay (2 timed contacts)
Al b: On-delay (1 timed +1 instantaneous contact)
Dl a: Interval (2 timed contacts)
Dl b: Interval (1 timed + 1 instantaneous contact)
GI: Pulse delayed
SW: Symmetrical flasher (starting pulse on)

Features

Multi-voltage and mono-function timer range Front panel or socket mount

- Asymmetrical flasher The ON and OFF time are independently adjustable
- 8 pin plug-in
- Time scales from 0.05 s to 300 h
- 2 contacts
- Front panel mounting fixing included
- 90 series sockets

Contact specification

Contact configuration	
Rated current/Maximum peak current	A
Rated voltage/Maximum switching voltage V AC	

Rated voltage/Maximum switching voltage V AC
Rated load AC1

Rated load AC15 (230 V AC)	VA
Single phase motor rating (230 V AC)	kW

Breaking capacity DC $1: 30 / 110 / 220 \mathrm{~V} \quad \mathrm{~A}$

Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	

\section*{Supply specification
 | Nominal voltage $\left(U_{N}\right)$ | V AC $(50 / 60 \mathrm{~Hz})$ |
| :--- | ---: |
| | V DC |
| Rated power AC/DC | $\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$ |
| Operating range | V AC |}

Technical data

Specified time range	
Repeatability	$\%$
Recovery time	ms
Minimum control impulse	ms
Setting accuracy-full range	$\%$
Electrical life at rated load ACl	cycles
Ambient temperature range	${ }^{\circ} \mathrm{C}$

Protection category
Approvals (according to type)
88.92-0000

- Mono-function
- 8 pin, 2 timed contacts
- Plug-in for use with 90 series sockets

PI: Asymmetrical flasher (starting pulse OFF)
88.92-0001

- Mono-function
- 8 pin, 2 timed contacts
- Plug-in for use with 90 series sockets

LI: Asymmetrical flasher (starting pulse ON)
without control signal

Ordering information

Example: 88 series multi-function timer, 2 CO (DPDT) 8 A contacts, ($24 \ldots 230$)V AC $(50 / 60 \mathrm{~Hz}$) and ($24 \ldots 230$)V DC supply.

Selection of: function, time scale and units

	88.02	88.12	88.92-0000	88.92-0001
Function	Al, DI, GI, SW, BE, CE, DE	Al a, Al b, Dl a, Dl b, Gl, SW	PI	LI
Time scale	0.5, 1, 5, 10		1.2,3, 12, 30	
Unit of time	s (second), min (minute), h (hour), 10h (10 hours)		s (second), 10s (second $\times 10$), min (minute), $10 \mathrm{~min}($ minute $\times 10)$, h (hour), 10 h (hour $\times 10$)	

Time scales
Full scale value for types 88.02, 88.12

$\mathbf{D} \mathbf{H}$	\mathbf{s}	$\mathbf{m i n}$	\mathbf{h}	$\mathbf{1 0 h}$
$\mathbf{0 . 5}$	0.5 second	0.5 minute	0.5 hour	5 hour
$\mathbf{1}$	1 second	1 minute	1 hour	10 hour
$\mathbf{5}$	5 second	5 minute	5 hour	50 hour
$\mathbf{1 0}$	10 second	10 minute	10 hour	100 hour

Full scale value for type $\mathbf{8 8 . 9 2}$

$\mathbf{H}-\mathbf{E}$	\mathbf{s}	$\mathbf{1 0 s}$	$\mathbf{m i n}$	$\mathbf{1 0 m i n}$	\mathbf{h}	$\mathbf{1 0 h}$
$\mathbf{1 . 2}$	1.2 second	12 second	1.2 minute	12 minute	1.2 hour	12 hour
$\mathbf{3}$	3 second	30 second	3 minute	30 minute	3 hour	30 hour
$\mathbf{1 2}$	12 second	120 second	12 minute	120 minute	12 hour	120 hour
$\mathbf{3 0}$	30 second	300 second	30 minute	300 minute	30 hour	300 hour

NOTE: time scales and functions must be set before energising the timer.

Types 88.02, 88.12

Type 88.92

LED/visual indication

Types 88.02, 88.12

VII-2014, www.findernet.com

A	Yellow LED: power ON (U)
B	Red LED: timing in progress (C)
C	Unit of time selected
$\stackrel{\text { co }}{\text { ¢ }}$ D	Time scale selector
$\stackrel{c}{4}$	Function selector
\% F	Function selected
J G	Time scale selected
$\stackrel{\text { N }}{\stackrel{\text { H }}{ }}$	Unit of time selector

Type 88.92

A	Red LED: pulse ON (T1)
\mathbf{B}	Green LED: pulse OFF (T2)
C	Red timing regulator: T1 time setting
\mathbf{D}	Unit of time selector: T1 (ON)
\mathbf{E}	Unit of time selector: T2 (OFF)
F	Green timing regulator: T2 time setting
\mathbf{G}	Time scale selected
\mathbf{H}	Time scale selector

Functions for types 88.02, 88.12

$\begin{aligned} \text { U } \quad \text { Supply } \\ \text { Voltage } \end{aligned}$	$\begin{aligned} & \text { LED } \\ & \text { (yellow) } \end{aligned}$	$\begin{aligned} & \text { LED } \\ & \text { (red) } \end{aligned}$	Supply voltage	NO output contact	Contact	
					Open	Closed
$\text { S = } \quad \begin{gathered} \text { Signal } \\ \text { switch } \end{gathered}$			OFF	Open	$\mathrm{x} 1-\mathrm{x} 4$	$x 1-x 2$
P = Pause			ON	Open	$\begin{aligned} & x 1-x 4 \\ & x 1-x 2 \end{aligned}$	$\begin{aligned} & x 1-x 2 \\ & x 1-x 4 \end{aligned}$
R = Reset			ON	Open (timing in progress)	$\mathrm{x} 1-\mathrm{x} 4$	$x 1-x 2$
$-==\begin{aligned} \text { Output } \\ \text { Contact } \end{aligned}$			ON	Closed	$x 1-x 2$	$x 1-x 4$

Wiring diagram
Type 88.02

(BE) Off-delay with control signal.
Power is permenently applied to the timer.
The output contacts transfer immediately on closure of the Signal Switch (S). Opening the Signal Switch initiates the preset delay, after which time the output contacts reset.

(CE) On - and off-delay with control signal.
Power is permenently applied to the timer.
Closing the Signal Switch (S) initiates the preset delay, after which time the output contacts transfer. Opening the Signal switch initiates the same preset delay, after which time the output contacts reset.
 (DE) Interval with control signal on.
Power is permenently applied to the timer.
On momentary or maintained closure of Signal Switch (S), the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.

RESET (R)

A momentary closure of the reset switch (2-7) will reset the timer. Longer term closure of the reset switch will hold the timer in the reset state. This is applicable for all functions.

PAUSE (P)

Closure of the pause switch (2-5) will immediately halt the timing process, but the elapsed time will be retained, and the current state of the output contacts will be maintained.
On opening of the pause switch, timing resumes from the retained value. This is applicable for all functions.

Functions for type 88.12

Wiring diagram Type 88.12

(Al a) On-delay (2 timed contacts).
Apply power to timer.
Contacts (C_{1} and C_{2}) transfer after preset time has elasped. Reset occurs when power is removed.

(Al b) On-delay

(1 timed contact + 1 instantaneous contact).
Apply power to timer. Output contact $\left(C_{1}\right)$ transfers immediately. Contact (C_{2}) transfers after the preset time has elasped. Reset occurs when power is removed.

(Dl a) Interval (2 timed contacts).
Apply power to timer.
Output contacts $\left(C_{1}\right.$ and $\left.C_{2}\right)$ transfer immediately. After preset time has elasped, the contacts reset.
(Dl b) Interval (1 timed contact + 1 instantaneous contact). Apply powert to timer. Output contacts $\left(C_{1}\right.$ and $\left.C_{2}\right)$ transfer immediately. After preset time has elasped, the contact $\left(\mathrm{C}_{2}\right)$ resets. Contact $\left(C_{1}\right)$ resets when power is removed.

(GI) Pulse delayed.

Apply power to timer. Output contacts transfer after preset time has elapsed. Reset occurs after a fixed time of 0.5 s .

(SW) Symmetrical flasher (starting pulse on).
Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ratio is $1: 1$ (time on $=$ time off).

Functions for type 88.92

$\begin{gathered} \text { LED ON } \\ \text { (red) } \end{gathered}$	LED OFF (green)	Supply voltage	Contact	
			Open	Closed
		OFF	11-14	11-12
			21-24	21-22
		ON	11-12	11-14
			21-22	21-24
		ON	11-14	11-12
			21-24	21-22

Wiring diagram

Type 88.92

(LI) Asymmetrical flasher (starting pulse ON). Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ON and OFF times are independently adjustable.

(PI) Asymmetrical flasher (starting pulse OFF).

Apply power to timer. Output contacts transfer after time T2 has elapsed and cycle between OFF and ON for as long as power is applied. The ON and OFF times are independently adjustable.

Screw terminal (Box clamp) socket panel or 35 mm rail (EN 60715) mount		$\begin{array}{\|l} 90.20 \\ \text { Blue } \end{array}$	$90.20 .0$ Black	90.21 Blue	$90.21 .0$ Black
For timer type		88.12, 88.92		88.02	
Technical data					
Rated values		$10 \mathrm{~A}-250 \mathrm{~V}$			
Dielectric strength		2 kV AC			
Protection category		IP 20			
Ambient temperature ${ }^{\circ} \mathrm{C}$		$-40 \ldots+70$			
(4)27) Screw torque	Nm	0.5			
Wire strip length	mm	10			
Max. wire size for 90.20 and 90.21 sockets		solid wire		stranded wire	
	mm^{2}	$1 \times 6 / 2 \times 2.5$		$1 \times 6 / 2 \times 2.5$	
	AWG	$1 \times 10 / 2 \times 14$		$1 \times 10 / 2 \times 14$	

Approvals (according to type):

C \in © © (B)

cㄱNus
90.26

Approvals (according to type):

90.13 .4

Approvals (according to type):

90.20

Screw terminal (Plate clamp) socket panel or 35 mm rail (EN 60715) mount		$\begin{aligned} & 90.26 \\ & \text { Blue } \end{aligned}$	$90.26 .0$ Black	$\begin{aligned} & 90.27 \\ & \text { Blue } \end{aligned}$	$90.27 .0$ Black
For timer type		88.12, 88.92		88.02	
Technical data					
Rated values		10 A			
Dielectric strength		2 kV			
Protection category		IP 20			
Ambient temperature	${ }^{\circ} \mathrm{C}$	-40..			
(44) Screw torque	Nm	0.8			
Wire strip length	mm	10			
Max. wire size for 90.26 and 90.27 sockets		solid		strande	
	mm^{2}	$1 \times 4 /$		1x4 /	
	AWG	1×12		1×12	

90.26

Sockets 8-11 pin backwired with solder terminals
For timer type
Technical data
Rated values
Dielectric strength
Ambient temperature

90.27
90.13 .4 (black)
88.02

90.13 .4

Features

Slim timed sockets for 34 series, 6.2 mm wide

- Timer adjustment via top mounted rotary knob accessible after assembly
- Control signal terminal
- DIP-switch for selection of 4 time scales and 8 functions
- Output with fuse module option
- EMR and SSR: 12 to 24 V AC/DC supply
- Screw terminal and push-in terminal

93.68	93.69
Screw terminal	
Push-in terminal	

For outline drawing see page 3
Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC

Rated load AC 1	VA
Rated load AC15 (230 V AC)	VA

Single phase motor rating (230 V AC) kW

| Breaking capacity DC $1: 30 / 110 / 220 \mathrm{~V} \quad \mathrm{~A}$ |
| :--- | :--- |
| Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$ |

Standard contact mate
Supply specification

Nominal voltage (U_{N}) V AC ($50 / 60 \mathrm{~Hz}$)/DC	12... 24
Rated power AC/DC VA/W	See coils specifications page 2
Operating range V AC (50/60 Hz)/DC	9.6...26.4
Technical data	
Specified time range	$(0.1 \ldots 3) \mathrm{s},(3 \ldots 60) \mathrm{s},(1 \ldots 20) \mathrm{min},(0.3 \ldots 6) \mathrm{h}$
Repeatability \%	± 1
Recovery time ms	≤ 50
Setting accuracy - full range \%	5
Electrical life at rated load in AC1 cycles	See 34.51 (EMR) and 34.81 (SSR) relays
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$
Protection category	IP 20
Approvals (according to type)	

AI: On-delay
DI: Interval
GI: Pulse (0.5 s) delayed
SW: Symmetrical flasher (starting pulse on)
BE: Off-delay with control signal
CE: On- and off-delay with control signal
DE: Interval with control signal on
EE: Interval with control signal off

See 34.51 and 34.81 relays

CE © ER © $\mathrm{CO} \mathrm{TH}_{\text {us }}^{\circ}$

Ordering information

Example: type 93.68 multifunction timer module for 34 series relay, screw terminals, (12...24)V AC/DC supply voltage.

Combinations

Output	Supply voltage	Type of relay	Type of socket, screw terminals
1 pole 6 A, electromechanical relay	$12 \mathrm{~V} \mathrm{AC/DC}$	34.51 .7 .012 .0010	93.68 .0 .024
1 pole 6 A, electromechanical relay	$24 \mathrm{~V} \mathrm{AC/DC}$	34.51 .7 .024 .0010	93.68 .0 .024
1 output 2 A 24 V DC, solid state relay	$12 \mathrm{~V} \mathrm{AC/DC}$	34.81 .7 .012 .9024	93.68 .0 .024
1 output 2 A 240 V AC, solid state relay	$12 \mathrm{~V} \mathrm{AC/DC}$	34.81 .7 .012 .8240	93.68 .0 .024
1 output 2 A 24 V DC, solid state relay	$24 \mathrm{~V} \mathrm{AC/DC}$	34.81 .7 .024 .9024	93.68 .0 .024
1 output 2 A 240 V AC, solid state relay	$24 \mathrm{~V} \mathrm{AC/DC}$	34.81 .7 .024 .8240	93.68 .0 .024
Output	Supply voltage	Type of relay	Type of socket, push-in terminals
1 pole 6 A, electromechanical relay	12 V AC/DC	34.51 .7 .012 .0010	93.69 .0 .024
1 pole 6 A, electromechanical relay	$24 \mathrm{~V} \mathrm{AC/DC}$	34.51 .7 .024 .0010	93.69 .0 .024
1 output 2 A 24 V DC, solid state relay	$12 \mathrm{~V} \mathrm{AC/DC}$	34.81 .7 .012 .9024	93.69 .0 .024
1 output 2 A 240 V AC, solid state relay	$12 \mathrm{~V} \mathrm{AC/DC}$	34.81 .7 .012 .8240	93.69 .0 .024
1 output 2 A 24 V DC, solid state relay	$24 \mathrm{~V} \mathrm{AC/DC}$	34.81 .7 .024 .9024	93.69 .0 .024
1 output 2 A 240 V AC, solid state relay	$24 \mathrm{~V} \mathrm{AC/DC}$	34.81 .7 .024 .8240	93.69 .0 .024

Note: Although the timer socket covers both 12 and 24 volt supplies, it must be combined with the appropriate 12 V or 24 V relay; resulting in a combination suitable for just a single supply voltage.

Technical data

EMC specifications			
Type of test		Reference standard	
Electrostatic discharge	contact discharge	EN 61000-4-2	4 kV
	air discharge	EN 61000-4-2	8 kV
Radio-frequency electromagnetic field	($80 \div 1,000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
	($1,400 \div 2,700 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
Fast transients (burst) ($5-50 \mathrm{~ns}, 5$ and 100 kHz)	on Supply terminals	EN 61000-4-4	4 kV
	on control signal terminals	EN 61000-4-4	4 kV
Surges ($1.2 / 50 \mu \mathrm{~s}$) on supply and control signal terminals	common mode	EN 61000-4-5	2 kV
	differential mode	EN 61000-4-5	0.8 kV
Radio-frequency common mode ($0.15 \div 80 \mathrm{MHz}$)	on Supply terminals	EN 61000-4-6	10 V
	on control signal terminals	EN 61000-4-6	3 V
Radiated and conducted emission		EN 55022	class B
Other data			
Current absorption on signal control (B1)	mA	<1.7 (12V) - <3.5 (24V)	
Bounce time (EMR) : NO/NC	ms	1/6	
Vibration resistance (EMR, 10.. 55 Hz): NO/NC	g	10/5	
Power lost to the environment	without contact current W	0.3	
	with rated current W	0.8	
Terminals		Solid and stranded cable	
		Screw terminals	Push-in terminals
Wire strip length	mm	10	8
(4)4 ${ }^{\text {P }}$ Screw torque	Nm	0.5	-
Max. wire size	mm^{2}	$1 \times 2.5 / 2 \times 1.5$	1×2.5
	AWG	$1 \times 14 / 2 \times 16$	1×14
Min. wire size	mm^{2}	1×0.2	1×0.2
	AWG	1×24	1×24

Input specifications

Input data AC/DC timer

Nominal voltage	Operating range (AC/DC)		Must dropout voltage U_{r}	Rated input current at U_{N}		Rated power at U_{N}	
U_{N}	$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		DC	AC	DC	AC
V	V	V	V	mA	mA	W	VA / W
12	9.6	13.2	1.2	15	23	0.2	$0.3 / 0.2$
24	19.2	26.4	2.4	11	19	0.25	0.4 / 0.3

Outline drawings

93.68
Screw terminal

93.69

Push-in terminal

Times scales

Functions	LED	Supply voltage	NO contact/output
		OFF	Open
	$\square \square$	ON	Open
	- ■ - ■ - +	ON	Open (timing to close in progress)
	$\underline{ـ}$	ON	Closed

$\mathbf{U}=$ Supply voltage $\quad \mathbf{S}=$ Signal switch

工 = Output contact

4	\square

(DI) Interval

Apply power to timer.
Output contacts transfer immediately.
After the preset time has elapsed, contacts reset.

(GI) Pulse (0.5 s) delayed
Apply power to timer.
Output contacts transfer after preset time has elapsed. Reset occurs after a fixed time of 0.5 s .

(SW) Symmetrical flasher (starting pulse on) Apply power to timer.
Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ratio is $1: 1$ (time on = time off).

(BE) Off-delay with control signal

 Power is permenently applied to the timer. The output contacts transfer immediately on closure of the Signal Switch (S). Opening the Signal Switch initiates the preset delay, after which time the output contacts reset.

12345

(CE) On- and off-delay with control signal
Power is permenently applied to the timer. Closing the Signal Switch (S) initiates the preset delay, after which time the output contacts transfer. Opening the Signal switch initiates the same preset delay, after which time the output contacts reset.

12345

(DE) Interval with control signal on
Power is permenently applied to the timer. On momentary or maintained closure of Signal Switch (S), the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.

(EE) Interval with control signal off
Power is permenently applied to the timer. On opening of the Signal Switch (S) the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.

- Possible to control an external load, such as another relay coil or timer, connected to the control signal terminal B1.

* A voltage other than the supply voltage can be applied to the command Start (B1), example:
$\mathrm{A} 1-\mathrm{A} 2=24 \mathrm{~V}$ AC
B1 $-\mathrm{A} 2=12 \mathrm{~V} \mathrm{DC}$

Accessories

Approvals (according to type):
$\mathrm{C} \in \mathrm{FH}\left[\mathrm{C} \mathrm{S}_{\text {us }}^{\circ}\right.$

Output fuse module

- For $5 \times 20 \mathrm{~mm}$ fuses up to $6 \mathrm{~A}, 250 \mathrm{~V}$
- Easy visibility of the fuse condition through the window
- Quick connection to socket

Notes

Safety: Because the output circuit can be reinstated, even with the fuse removed, it is important not to consider the removal of the fuse as a "safety disconnect". Always isolate elsewhere before working on the circuit.
UL: According to UL508A, the fuse module cannot be installed in power circuits (in which it is mandatory that a fuse certified according to UL category JDDZ be fitted). However, where the MasterInterface is connected as an output interface to a PLC no such restrictions apply, and the fuse module can be usefully employed.

16-way jumper link
093.16 (blue) 093.16 .0 (black) 093.16 .1 (red)

Rated values 6 A - 250 V
Possibility of multiple connection, side by side

Approvals (according to type):

093.60

(
093.60

1. By breaking off the protruding ribs (by hand), the separator becomes only 1.8 mm thick; useful for the visual separation of different groups of interfaces, or necessary for the protective separation of different voltages of neighbouring interfaces, or for the protection of cut ends of jumper links.

2. Leaving the ribs in place provides 6.2 mm separation. Simply cutting (with scissors) the relevant segment(s) permits the interconnection across the separator of 2 different groups of interface relays, using the standard jumper link.

Sheet of marker tags, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$

Accessories

093.68.14.1

Approvals (according to type)

MasterADAPTER

093.68.14.1

The MasterADAPTER permits the easy connection of A1/A2 terminals of up to MasterINTERFACE modules to PLC outputs via a 14-Pole ribbon cable, plus simple 2-wire power supply connection.

Technical data		
Rated current (per signal path)	A	1
Minimum required supply power	W	3
Nominal voltage (U_{N})	V DC	24
Operating range		(0.8...1.1) U_{N}
Control logic		Positive switching (to Al)
Power supply status indication		Green LED
Ambient temperature range	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Terminals for 24 V control logic		
Type of connector		14 pole, according to IEC 60603-13
Terminals for 24 V power supply		
Wire strip length	mm	9.5
(패) Screw torque	Nm	0.5
Max. wire size		
	solid wire mm^{2}	$1 \times 4 / 2 \times 1.5$
	AWG	$1 \times 12 / 2 \times 16$
	stranded wire mm^{2}	$1 \times 2.5 / 2 \times 1.5$
	AWG	$1 \times 14 / 2 \times 16$

Features

Relays for automatic control of lighting according to the ambient light level Integral light sensor For pole or wall mounting
10.32-2 NO 16A output contacts
10.41-1 NO 16A output contact

- Double pole Live and Neutral switching possible with the 10.32
- Sensitivity adjustment from 1 to 80 lux
- Cadmium free contact material
- Cadmium free light sensor (IC photo diode)
- Electronic circuit - transformer isolated
- Italian Patent "light feedback compensation" innovative principle
Compatible with slow starting gas discharge lamps (up to 10 minutes)
- For the first 3 working cycles the delay time (On and Off) is reduced to zero in order to aid installation
- Available for supply 230 and 120 V AC (50/60 Hz)
10.32

- Double pole switching - 2 NO 16A - Single pole switching - 1 NO 16A for Live and Neutral switching

Contact specification
Contact configuration

Rated current/Maximum peak current	A
Rated voltage/Maximum switching voltage V	AC

Rated voltage/Maximum switching voltage V AC

10.41

1 NO (SPST-NO)
2 NO (DPST-NO)
16/30 (120 A - 5 ms)
$16 / 30$ (120 A - 5 ms)
120

Features

Relays for automatic control of lighting according to the ambient light level Integral light sensor

For pole or wall mounting

10.42 - Two independent 16A outputs with individual lux setting
10.51-Miniature single 12A NO output
10.61-Mounting on street light body

- Sensitivity adjustment from 1 to 80 lux
- Fixed sensivity 10 lux ($\pm 20 \%$) - (10.61 type)
- Cadmium free contact material
- Cadmium free light sensor (IC photo diode)
- Electronic circuit - transformer isolated (10.42 type)
- Italian Patent "light feedback compensation" innovative principle (10.51 type)
- For the first 3 working cycles the delay time (On and Off) is reduced to zero in order to aid installation
- Available for supply 230 and 120 V AC ($50 / 60 \mathrm{~Hz}$)
- Prewired with silicone wire, 500 mm length (10.61 type)

- Two independent outputs 2 NO 16A

2 NO (DPST-NO)
$16 / 30(120 \mathrm{~A}-5 \mathrm{~ms})$

- Single pole switching - 1 NO 12A - Miniature size

10.51

10.61

- Single pole switching 1 NO 16 A

Contact specification

Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
-

\section*{| Rated |
| :--- |
| Ra |}

Ordering information

Example: 10 series light dependent relay, 2 NO (DPST-NO) 16 A contact, screw terminal connections, 230 VAC supply.

Technical data

Insulation	10.32 / 41 / 42		10.51		10.61
Dielectric strength between open contacts V AC	1,000		1,000		1,000
Conducted disturbance immunity					
Surge (1.2/50 s) on L and N (differential mode) kV	4		4		6
Other data					
Cable grip $\quad \varnothing$ mm	(8.9...12)		(7.5...9)		-
(77) Screw torque Nm	0.8		0.8		-
Max. wire size	solid cable	stranded cable	solid cable	stranded cable	-
mm^{2}	1x6 / 2x4	$1 \times 6 / 2 \times 2.5$	$1 \times 6 / 2 \times 4$	$1 \times 4 / 2 \times 2.5$	-
AWG	$1 \times 10 / 2 \times 12$	$1 \times 10 / 2 \times 14$	$1 \times 10 / 2 \times 12$	$1 \times 12 / 2 \times 14$	-
Output wires					
Material	-		-		Silicone rubber UV resistant
Size mm^{2}	-		-		1.5
Length mm	-		-		500, ends-ferruled
Rated insulation voltage kV	-		-		0.6 / 1
Max temperature ${ }^{\circ} \mathrm{C}$	-		-		120

Functions

LED*	10.32 / 10.41 / 10.42		10.51	
	Supply voltage	NO output contact	Supply voltage	NO output contact
	OFF	Open	OFF or ON	Open
\square	ON	Open	ON	Closed
	ON	Open (Timing in Progress)	ON	Open (Timing in Progress)
	ON	Closed	-	-

* The LED is located under the terminal cover, close to the Lux adjustment knob. It indicates the contact status and assists in the test and setting of the correct light threshold level.

Wiring diagrams

Advantage of the "light feedback compensation" principle

Light dependent relay where the lighting being controlled does not influence the light level seen by the light sensor

Traditional light dependent relay where the lighting being controlled influences the light level seen by the light sensor

Type 10.32, 10.41 and 10.51
light dependent relay with
"light feedback compensation"

Correct functioning - provided the sensor can be shielded from the effects of the controlled lighting switching On and Off

Incorrect functioning where the lamps cycle between On and Off, because their effect is being detected by the light sensor

The innovative principle of "light feedback compensation" avoids
the annoying and damaging effects of the lamps repeatedly "hunting" between On and Off, due to poor installation
————Ambient light level as measured by the light dependent relay's integral light sensor.
Ambient light + controlled light level as measured by the light dependent relay's integral light sensor.

Notes

1. It is good practice to try to achieve a correct installation where the light emitted from the lamp(s) does not influence the light level seen by the sensor, although the "light feedback compensation" principle will help when this is not fully achievable. In this case it should be appreciated that the "light feedback compensation" principle may delay slightly the time of Switch Off - beyond the ideal.
2. The compensation principle is not effective where the combined effect of the ambient light and the controlled lighting exceeds 120 lux.
3. The 10.32 and 10.41 types are compatible with gas discharge lamps that attain full output within 10 minutes, since the electronic circuit monitors lamps' light output over a 10 minutes period to achieve a true assessment of its contribution to the overall lighting level.

Features

Relays for automatic control of lighting according to ambient light level - with separate light sensor
11.42-1 CO + 1 NO 12 A output contacts

- Two independent outputs with individual lux setting
- Selector with 4 positions:
- Standard range (threshold setting $1 \ldots 80$ |x) - High range (threshold setting 20... 1000 (x) - continuous light (helpful during installation and initial testing and for maintenance purposes) - light off (useful for vacations)
- For the first 6 working cycles (in total for channels $1 \& 2$) the delay time (On and Off) is reduced to zero in order to aid installation
- LED status indication

11.91-1 CO 16 A output contact

(+ auxiliary output for Power Module)

- Daily time switch function - programmable to inhibit main output (for energy saving)
- Auxiliary output - directly driven by the photosensor
- Italian patent "Light feedback compensation" principle
- Sensitivity adjustment from 2 to 150 lux
- LCD status indication, set-up and programming
- Internal battery for set-up/programming without supply and for time/program back-up in case of power failure (5 years)
- SELV separation between contact and supply circuit
- Double insulation between supply and light sensor
- 35 mm rail (EN 60715) mount
- Cadmium free contact material
- Cadmium free light sensor (IC photo diode)
* 11.91 auxiliary output: 12 V DC, $1 \mathrm{~W} \max$ For outline drawing see page 8

Contact specification

Contact configuration	$1 \mathrm{CO}($ SPDT) + 1 NO (SPST-NO)	1 CO (SPDT) + 1 aux output*
Rated current/Maximum peak current A	$12 / 24$ ($120-5 \mathrm{~ms}$)	16/30 ($120-5 \mathrm{~ms}$)
Rated voltage/Maximum switching voltage V AC	250 / 400	250 / 400
Rated load AC1 VA	3,000	4,000
Rated load AC15 (230 V AC) VA	750	750
Nominal lamp rating (230 V): incandescent W	2,000	2,000
compensated fluorescent W	750	750
uncompensated fluorescent W	1,000	1,000
halogen W	2,000	2,000
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10 / 10)
Standard contact material	AgSnO_{2}	AgSnO_{2}
Supply specification		
Nominal voltage (U_{N}) V AC ($50 / 60 \mathrm{~Hz}$)	230	230
DC	-	-
Rated power VA (50 Hz)/W	7.4 / 2.8	$6.6 / 2.9$
Operating range V AC (50 Hz)	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
DC	-	-
Technical data		
Electrical life at rated load in AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Threshold setting: Standard range lx	1... 80	2... 150
High range lx	20...1,000	-
Hysteresis (switching Off/On ratio)	1.25	$\Delta=3 \mathrm{~lx}$
Delay time: switching On / Off s	15/30	$25 / 50$
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$	$-20 \ldots+50$
Protection category: light dependent relay/light sensor	IP 20 / IP 54	IP 20 / IP 54
Approvals (according to type)	CE EH[PG (1)

Ordering information

Example: 11 series light dependent relay with time switch, 1 CO (SPDT) 16 A contact, 230 V AC supply.

Technical data

Insulation	Dielectric strength		Impulse (1.2/50 s)	
between supply and contacts	4,000 V AC		6 kV	
between supply and light sensor	2,000 V AC		4 kV	
between open contacts	1,000 V AC		1.5 kV	
EMC specifications				
Type of test	Reference standard		11.31	11.41 / 42 / 91
Electrostatic discharge contact discharge	EN 61000-4-2		4 kV	
air discharge	EN 61000-4-2		8 kV	
Radiated electromagnetic field ($80 \ldots 1,000 \mathrm{MHz}$)	EN 61000-4-3		$10 \mathrm{~V} / \mathrm{m}$	
Fast transients on supply terminals	EN 61000-4-4		3 kV	4 kV
(burst 5/50 ns, 5 and 100 kHz) on light sensor connection	EN 61000-4-4		3 kV	4 kV
Voltage pulses on supply terminals common mode	EN 61000-4-5		4 kV	
(surge 1.2/50 s) differential mode	EN 61000-4-5		3 kV	4 kV
Radiofrequency common mode voltage on supply terminals	EN 61000-4-6		10 V	
(0.15 ..80 MHz) on light sensor	EN 61000-4-6		3 V	
Voltage dips $70 \% U_{N}, 40 \% U_{N}$	EN 61000-4-11		10 cycles	
Short interruptions	EN 61000-4-11		10 cycles	
Radio frequency conducted emissions $\quad 0.15 \ldots 30 \mathrm{MHz}$	EN 55014		class B	
Radiated emissions $30 \ldots 1,000 \mathrm{MHz}$	EN 55014		class B	
Terminals				
(47) Screw torque Nm	0.8			
Max. wire size solid cable	$1 \times 6 / 2 \times 4 \mathrm{~mm}^{2}$		$1 \times 10 / 2 \times 12$ AWG	
stranded cable	$1 \times 4 / 2 \times 2.5 \mathrm{~mm}^{2}$		$1 \times 12 / 2 \times 14$ AWG	
Wire strip lenght mm	9			
Other data				
Cable grip of light sensor mm	7.5... 9			
Maximum cable length relay to light sensor m	$50\left(2 \times 1.5 \mathrm{~mm}^{2}\right)$			
Preset threshold lx	10			
Power lost to the environment	11.31	11.41	11.42	11.91
	0.3	1.3	1.4	1.4
	0.9	2.0	2.8	2.9
	1.7	2.6	3.8	3.5

Wiring diagrams

Type 11.91 + 19.91 L

Advantage of the "Zero hysteresis" patented circuit:
 ensures reliable switching without wasting energy

Switch OFF level = Switch ON level Patented "Zero Hyseresis" circuitry ensures reliable switching without wasting energy.
"Traditional" light dependent relays incorporate switching hysteresis to prevent malfunctioning or tripping. This results in an unnecessary delay in switching off, and a resulting waste of energy (over period T).

Brightness of the natural light
The NO of the light dependent relay is closed (light is switched on)

Advantage of the "light feedback compensation" principle:

avoids the effect of the lamps repeatedly "hunting" between On and Off, due to poor installation

Light dependent relay where the lighting being controlled does not influence the light level seen by the light sensor

Traditional light dependent relay where the lighting being controlled influences the light level seen by the light sensor

Type 11.41 and 11.91 light dependent relay with "light feedback compensation"

OFF threshold

The innovative principle of "light feedback compensation" avoids the annoying and damaging effects of the lamps repeatedly "hunting" between On and Off, due to poor installation

- - Ambient light level as measured by the light dependent relay's light sensor.
\simeq Ambient light + controlled light level as measured by the light dependent relay's light sensor.

Notes

1. It is good practice to try to achieve a correct installation where the light emitted from the lamp(s) does not influence the light level seen by the light sensor, although the "light feedback compensation" principle will help when this is not fully achievable. In this case it should be appreciated that the "light feedback compensation" principle may delay slightly the time of Switch Off - beyond the ideal.
2. The compensation principle is not effective where the combined effect of the ambient light and the controlled lighting exceeds a maximum value (200 lux for the $11.91,160 / 2,000$ lux for standard/high range of the 11.41).
3. The 11.41 and 11.91 types are compatible with gas discharge lamps that attain full output within 10 minutes, since the electronic circuit monitors lamps' light output over a 10 minute period to achieve a true assessment of its contribution to the overall lighting level.

Functions 11.91

	Switch-OFF time	Switch-ON time		Application examples
	NO	NO		Working as a standard light-dependent relay
$\frac{1}{1114}$	YES	NO	(1) OFF	Working where lighting is not required from 10 PM onwards
	$\text { YES } \leftrightarrows$	$\text { YES } O$	$9_{\text {OFF ON }}$	Working where lighting is not required between 1 AM and 5 AM
$\begin{aligned} & \text { AUX } \\ & \text { Y1 Y2 } \end{aligned}$				Additional output - light dependent without time switch intervention

All the functions and the values can be set through the front joystick and are displayed on the front LCD.

Display mode

During normal operation, with AC supply connected, the following is displayed:

- the current time
- the current lux level (upper bars)
- the set lux threshold (lower bars)
- the status (open/closed) of the 11-14 output contact
- the "moon" symbol (only if the current lux level is lower than the set threshold). It also indicates that the Auxiliary output is On, although the main output contact 11-14 may be On, depending on the chrono program.
the "chrono" symbol (only if a switch-off time is enabled).
From Display mode it is possible to enter Program mode or Set-up mode with a short or long (> 2 s) press respectively, to the joystick centre. From Display mode it is also possible to enter Hand mode, where (independently of the lux level and the Chrono program) the 11-14 output contact is forced into the On or Off position with a long (>2s) press of the joystick upper or lower quadrants, respectively. The "hand" symbol is then displayed. A long press to the opposite quadrant will reset the hand mode.

Program mode

In this mode it is possible to set the lux threshold level, to enable and to set the switch-off time, to enable and to set the switch-on time. With a short press to the joystick right or left quadrant it is possible to progress from one program step to another (accepting the values set). At any program step it is possible to modify the set values with a short press to the joystick upper or lower quadrant. A long (> 1s) press allows the fast increment (or decrement) of values. A short press to the joystick centre will resume the display mode.

Set-up mode

In this mode it is possible to set the current year, month, day, hour and minute (in this order) and to enable european "Daylight saving".
With a short press to the joystick right or left quadrant it is possible to progress from one set-up step to another (accepting the values set); in any step it is possible to modify the set values with a short press to the joystick upper or lower quadrant. A long (> 1s) press allows the fast increment (or decrement) of values.
A short press to the joystick centre will resume the display mode.
Note: the product is supplied with central european time factory set and "Daylight saving" enabled.

[^20]
Auxiliary output

A solid state output at terminals Y1-Y2 is provided (rated 12 V DC, 80 mA 1 W max.). this can be used with the power module 19.91.9.012.4000 connected by the dedicated 011.19 connector. Or, it is possible to connect a suitable relay (for example, 38-48-49-4C-58-59 interface module) provided the coil is within the rating, and the wiring does not exceed 40 cm length. The auxiliary output is driven exclusively by the light sensor of the device, and is consequently independent of the time switch. With the main contact, this permits a flexible lighting system controlled by the ambient light, both with and without the influence of the time switch function.

19.91 power module specification

Contact configuration	1 CO (SPDT)
Rated current/Maximum peak current ($\left.\mathrm{I}_{\mathrm{N}} / \mathrm{I}_{\text {max }}\right)$ A	16/30 (120 A - 5 ms)
Rated voltage/Maximum switching voltage ($\left.\mathrm{U}_{\mathrm{N}} / \mathrm{U}_{\text {max }}\right)$ V AC	250 / 400
Rated load AC15 (230 VAC) VA	750
Nominal lamp rating (230 V): incandescent W	2,000
compensated fluorescent W	750
Nominal supply voltage (U_{N}) V DC	12
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$
Protection category	IP 20

11.31/41/42

LED	Supply voltage	$11.41 / 11.42$	NO output contact
	OFF	Open	Open
	ON	Open	Open
	ON	Open (timing to close in progress)	Open (timing to close in progress)
	ON	Closed	Closed
	ON	Closed (timing to open in progress)	Closed (timing to open in progress)
		ON	Fixed position (On or Off on selector)

11.42

Screw terminal

11.91

Screw terminal

$11.91+19.91$ power module
Screw terminal

Accessories

011.03

011.19

Light sensor (supplied with light dependent relay)

- Ambient temperature range: $-40 \ldots+70^{\circ} \mathrm{C}$
- Cadmium free
- Non polarized
- Double insulated with respect to light dependent relay supply
- Not compatible with old 11.01 and 11.71 light dependent relay (to be used with 011.00 photosensor)

Flush-mounted light sensor (protection category: IP66/67)

- Ambient temperature range: $-40 \ldots+70^{\circ} \mathrm{C}$
- Cadmium free
- Non polarized
- Double insulated with respect to light dependent relay supply
- Not compatible with old 11.01 and 11.71 light dependent relay
- Supplied with light dependent relay (packaging code POA)

Connection cable

Material		PVC, flame retardant
Conductor size	mm^{2}	0.5
Cable length	mm	500
Cable diameter	mm	5.0
Working voltage	V	$300 / 500$
Test voltage, cable	kV	2.5
Max. temperature	${ }^{\circ} \mathrm{C}$	+90

Adaptor for panel mounting (supplied with light dependent relay), 35 mm wide

2-pole connector (for type 11.91 and 19.91 power module)

For direct connection of 11.91 auxiliary output (Y1-Y2) to 19.91 supply (A1-A2)

| Sheet of marker tags, for types $11.31,11.41,11.42,19.91$, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$ | 060.72 |
| :--- | :--- | :--- |

Features

12.51 - Digital (analogue-style) time switch, daily/weekly programming

- 30 minutes interval setting
- Easily configurable for daily or weekly programming

12.81-Digital astro-switch

- Astro program: calculation of sunrise and sunset times through date, time and location coordinates
- Option for Astro ON period override, by timeswitch
- Location coordinates easily settable for most European countries through post codes
- Offset function: allows programming of switching times offset from the astronomic time (by up to 90 min , in 10 min steps)
- Summer/winter European time
- 1 CO 16 A output contact
- LCD status indication, set-up and programming
- Back-light display
- Internal battery for set-up and programming without supply, easily replaceable from the front
- Protective separation between supply and contacts
- 35 mm rail (EN 60715) mount
- Cadmium free contact material

For outline drawing see page 10
Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC

Rated load AC1	VA
Rated load AC15 (230 V AC)	VA

Nominal lamp rating: incandescent (230 V) W

	2,000	,
compensated fluorescent (230 V) W	750	750
energy saving (CFL, LED) (230 V) W	200	200
halogen (230 V) W	2,000	2,000
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgSnO_{2}	AgSnO_{2}
Supply specification		
Nominal voltage (U_{N}) V AC $(50 / 60 \mathrm{~Hz})$	120-230	230
V DC	-	-
Rated power VA $(50 \mathrm{~Hz}) / \mathrm{W}$	6.6/2.9	6.6/2.9
Operating range $\mathrm{AC}(50 \mathrm{~Hz})$	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
DC	-	-
Technical data		
Electrical life at rated load in AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Switching intervals	48	-
Minimum switching interval min	30	-
Accuracy s/day	1	1
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$	$-20 \ldots+50$
Protection category	IP 20	IP 20
Approvals (according to type)		G

Features

Electronic digital time switches

- Weekly time setting
- Type 12.21-1 Pole 16 A CO (SPDT) 35.8 mm width
- Type 12.22-2 Pole 16 A CO (DPDT) 35.8 mm width
- Type 12.71-1 Pole 16 A CO (SPDT) 17.6 mm width
- Available for 230 V AC or $12,24 \mathrm{~V}$ AC/DC supply
- Minimum time interval setting - 1 minute
- Internal battery for set-up without supply
- Impulse output function:
- 1s... 59: 59(mm:ss)
- Automatic adjustment for daylight saving - 35 mm rail (EN 60715) mount

- Digital weekly time switch
- 1 CO (SPDT)
- 35 mm rail (EN 60715) mount

12.22

- Digital weekly time switch - 2 CO (DPDT)
- 35 mm rail (EN 60715) mount
12.71

- Digital weekly time switch - 1 CO (SPDT)
- 35 mm rail (EN 60715) mount

For outline drawing see page 10, 11
Contact specification
Contact configuration

| Rated current/Maximum peak current $\quad \mathrm{A}$ |
| :--- | :--- |
| Rated voltage/Maximum switching voltage V AC |

| Rated voltage/Maximum switching voltage V AC |
| :--- | ---: |
| Rated load AC1 1 |

Rated load AC 15 (230 V AC) VA
Nominal lamp rating: incandescent (230 V) W

compensated fluorescent $(230 \mathrm{~V})$ W uncompensated fluorescent $(230 \mathrm{~V})$ W halogen $(230 \mathrm{~V}) \mathrm{W}$ Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$	
Standard contact material	

Supply specification

* Switching times in memory may be used more than once i.e. when selected for different days.

Features

Electronic digital time switches - weekly time setting

- Type 12.91... 0000 "ZENITH"

1 pole 16 A CO (SPDT)
35.8 mm width

- Type 12.91... 0090 "ZENITH"

1 pole 16 A CO (SPDT)
35.8 mm width
version for programming via PC by a special Key Memory (included)

- Type 12.92... 0090 "ZENITH"

2 pole 16 A CO (DPDT)
35.8 mm width
version for programming via PC by a special Key Memory (included)

- Type 12.92 "ZENITH"

2 Pole 16 A CO (DPDT)
35.8 mm width

- Astro program:
calculation of sunrise and sunset times through date, time and location coordinates (longitude and latitude)
- Offset function: allows programming of switching times offset (+ or -) from the astronomic time
- Minimum time interval setting - 1 minute - Internal battery for set-up without supply
- Automatic adjustment for daylight saving
- 35 mm rail (EN 60715) mount

For outline drawing see page 11
Contact specification
Contact configuration
Rated current/Maximum peak current A

Rated voltage/Maximum switching voltage V AC

Rated load AC1	VA
Rated load AC15 (230 V AC)	VA

Nominal lamp rating: incandescent (230 V) W

compensated fluorescent (230 V) W	
uncompensated	scent (230 V) W
halogen (230 V) W	
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	
Supply specification	
Nominal voltage (U_{N})	$\vee \operatorname{AC}(50 / 60 \mathrm{~Hz})$
Rated power AC/DC	VA (50 Hz)/W
Operating range	AC (50 Hz)

Technical data

Electrical life at rated load in AC1 cycles	$50 \cdot 10^{3}$	$50 \cdot 10^{3}$	$50 \cdot 10^{3}$
Type of time switch	weekly	weekly	weekly
Memory locations for switching times *	60	60	60
Minimum interval setting min	1	1	1
Accuracy s/day	0.5	0.5	0.5
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-30 \ldots+55$	$-30 \ldots+55$	$-30 \ldots+55$
Protection category	IP 20	IP 20	IP 20
Approvals (according to type)	CE EHE PG		

Ordering information

Example: 12 series digital/analogue time switch, 1 CO 16 A contact, 230 V AC supply

Technical data

Wiring diagrams

Accessories for type 12.71 and 12.91

| PC programming kit for type $12.71,12.91 .8 .230 .0090,12.92 .8 .230 .0090$ | 012.90 |
| :--- | :--- | :--- |

This special PC programming kit, permits fast and easy programming of the Time Switch with a PC or Laptop.
The program transfer can be done by the special Key Memory (supplied with the 12.91.8.230.0090, 12.92.8.230.0090) or directly by the Time switch 12.71 .
Contents: Programming adaptor, USB cable (1.8 meter length), Software.

1. Connect adaptor
012.90

PC Programming software

Easy and intuitive software to create programs for the Time Switch, in a few fast steps. For Windows 7, 8, 2000/XP/Vista.

Battery replacement type 12.51 and 12.81

Accessories type 12.51 and 12.81

011.01

Adaptor for panel mounting, 35 mm wide

Outline drawings
12.01

Screw terminal

12.21

Screw terminal

12.31

Screw terminal

12.22

Screw terminal

12.51/12.81

Screw terminal

Outline drawings

12.71

Screw terminal
\square

12.91... 0090 / 12.92... 0090

Screw terminal

12.91... 0000

Screw terminal

12.92

Screw terminal

Functions type 12.51

All the functions and the values can be set through the joystick and are displayed on the LCD.

Display mode

During normal operation, with AC supply connected, the following is displayed:

- the current time (hours and minutes)
- the status (ON/OFF and symbol of contact open/closed) of the 11-14 output contact
- the program for the current day (each solid segment represents an half-hour interval set to ON)

From Display mode it is possible to enter in Program mode or Setup mode respectively with a short or long (> 2s) press to the joystick centre ©().

Manual mode

From Display mode it is also possible to enter in Manual mode, where (independently from the program) the 11-14 output contact can be forced into the ON or OFF position with a long (>2s) press to the joystick + or ∇ directions, respectively. The "hand" symbol is then displayed. A long press in the opposite direction will exit the manual mode.

Setup mode

In this mode it is possible to set (in the following order):

- daily/weekly function
- current year
- current day
- current month
- current hour
- current minute
- enable/disable european summer time.

With a short press of the joystick \rightarrow or \leftarrow, it is possible to pass from one setup step to another (confirming the set values); in any step it is possible to modify the set values with a short press to the joystick \rightarrow or \square. A sustained (> 1s) press results in the fast increasing (or decreasing) of values.

A short press to the joystick centre © will restore the Display mode.

Note: the product is supplied factory set to Central Europe time with european summer time enabled.

Functions type 12.51

Program mode (daily)

In this mode it is possible to set the "pattern" of time segments, which define the ON time of the 11-14 output contact. This "pattern" will be the same for all days of the week (daily).

Entering Programming mode (from Display mode) with a short press to © takes the digital time to 00:00 (and any previously programmed segment pattern is displayed). Stepping backwards \leftarrow or forwards \rightarrow in time displays the appropriate segment time and the appropriate open or closed contact status for that time segment.
At any step it is possible to change the segment status with a short press to the joystick \mp (for ON) or ∇ (for OFF) as appropriate, and this also automatically advances the time to the next segment, and always in a clockwise direction. If the joystick is pressed several times in, say, the $+\boldsymbol{\text { direction then }}$ each successive segment will assume the ON status. If it is then pressed several times in the \square direction then each successive segment will assume the OFF status. This allows the rapid setting of many consecutive segments with the same status.

A short press to the joystick centre (O) will restore the display to the Display mode.

Program mode (weekly)

In this mode it is possible to set a different "pattern" of time segments for each day of the week (weekly).

Entering Programming mode (from Display mode) with a short press to © takes the display to the programming mode, for the current day. With a subsequent short press to \leftarrow or \rightarrow it is possible to pass from one day to another (Monday is day 1).
With the desired day selected it is possible to enter the programming mode for that day by pressing \approx. Program the segments for that day by following the same procedure as described above for daily mode. When all 48 segments have been set, accept with a short press to ©. Then progress to the next day by pressing the joystick in the \leftrightarrows or \rightarrow direction. Repeat programming for the next day, and then repeat for other remaining days.

At any time return to the Display mode with a short press to the joystick centre © .

COPY FUNCTION

View the particular day to be copied (using \leftarrow or \rightarrow as described above) and copy with a short press to + (the "copy icon" will then appear).

Then select another day, using \leftarrow or \rightarrow, and paste the copied program with a short press to + .
This can be repeated for other days.

A short press to the joystick centre (O) , or Ξ, will exit the copy function.

Power-save mode

If the 230 V AC supply is not connected, the time switch enters power-save mode: only the clock is maintained active whilst the display turns off so as to guarantee a long life for the built-in back-up battery.
With a press to the joystick it is possible to "awake" the device and enter Display mode (with the "plug" symbol displayed). A further press to (O) will enter the program or set-up mode as explained in the Display mode section above.
After about 1 minute of inactivity the power-save mode will start again. During program or set-up the current absorption is higher than in power-save mode, thus influencing the battery life.

In this mode the display back-light is not active. It is activated following a press to the joystick only with the 230 V AC supply connected, but after about 1 minute of inactivity the display back-light will turn off, and to activate it again it is necessary to press the joystick again.

Functions type 12.81

All the functions and the values can be set through the joystick and are displayed on the LCD.

Display mode

During normal operation, with AC supply connected, the following is displayed:

- the current time (hours and minutes)
- the status (ON/OFF and symbol of contact open/closed) of the 11-14 output contact

From Display mode it is possible to enter in Program mode or Setup mode respectively with a short or long (> 2s) press to the joystick centre ©(

Manual mode

From Display mode it is also possible to enter in Manual mode, where (independently from the program) the 11-14 output contact can be forced into the ON or OFF position with a long (>2s) press to the joystick + or \because directions, respectively. The "hand" symbol is then displayed.
A long press in the opposite direction will exit the manual mode.

Setup mode

In this mode it is possible to set (in the following order):

- country (using Internet websites extension, e.g. IT, DE, FR..)
- post-code (CP, setting only the first 2 digits, 00 to 99 - or letters for UK)
- current year
- current day
- current month
- current hour
- current minute
- enable/disable european summer time.

From the Display mode - Enter the Setup mode with a long press (> 2 s) to © .

With a short press to \rightarrow or \leftrightarrow, it is then possible to pass from one setup step to another (confirming the set values). In any step it is possible to modify the set values with a short press to \perp or \square. A sustained (> 1s) press results in the fast increment (or decrement) of values.

A short press to the joystick centre © will restore the Display mode.

If the "country" is set to "Coor" (between IT and HU) or if the "postal code" is set to "Coor" (between 99 and 00^{*}), press \rightarrow to view the coordinates of latitude and use + or \rightarrow to set between 30 and 64° North.
Press \rightarrow again to view the coordinates of longitude and use + or σ to set between 15° West and 50° East). Proceed in a similar way to set the time zone "Gmt" (00 corresponds to Greenwich Mean Time, 01 Central Europe, 02 Eastern Europe, and 03 European Russia), and then continue with setting year, day, month etc..
*or between ZE and $A B$ for UK post codes.

Note: the product is supplied with the following factory settings:

- Central Europe time,
- european summer time enabled,
- country Italy,
- post-code 00 (the capital city Rome).

Functions type 12.81

Program mode (advance/retard setting)

In this mode it is possible to set independently:

- the advance (or the retard) of the light turn-on time in the evening with respect to the "astronomic" sunset time.
- the advance (or the retard) of the light turn-off time in the morning with respect to the "astronomic" sunrise time;

From the Display mode - A short press of the joystick (@) will display the "astronomic" sunset time, indicated by the (clockwise) transition from, li", to ("ON" and closed contact symbols displayed). A short press to + or \rightarrow will retard or advance the switch ON time about the astronomic time in 10 minute steps (up to a maximum of 90 min.).
Press \rightarrow to display the "astronomic" sunrise time, indicated by the (clockwise) transition from (to $\mathbf{2 1 /}$ = ("OFF" and open contact symbols displayed). Again, a short press to \rightarrow or \rightarrow will retard or advance the switch OFF time about the "astronomic" time, in 10 minute steps.
At this point, either exit (to Display mode) with a short press to ©), or continue to set the Astro ON period override time(s) with a short press to \rightarrow.
Set the OFF time using \rightarrow or \rightarrow. A further short press to \rightarrow will display the ON time which again can be set using \rightarrow or \square.
Note: setting "-:-" for either OFF or ON means the function is inoperative.
Continuing to press \rightarrow will cycle through the "sunset" / "sunrise" / "OFF" / "ON" settings in turn.
A short press to © at any time will return the display to Display mode.

Note 1: The effect of the retard/advance settings is valid for all days. That is; lights will, for example, always turn-on every day for 30 minutes before the "astronomic" sunset time.
Note 2: The effect of the On period override settings is also valid for all days - but also see Note 3 by the function diagrams.

*Note 3: Depending on the time of year (summer specifically) it may be that the override ON time will fall after the AstroOFF time. In this case, the output switches off at the Astro OFF time and the override ON time is ignored.

The Override feature permits the 12.81 three different ways of functioning:

Classic function where the AstroON and AstroOFF times are determined by the geographic coordinates. These times vary every day.

Functions such that the output turns on according to the AstroON time and turns off according to the clock off-time OFF . Application example: shop window lighting on by AstroON at sunset and off $\mho_{\text {OFF }}$ at 00:30.

Fins such that the output turns on according to the AstroON time and turns off according to the clock off-time OFF, and then turns back on at the clock on-time $@_{\text {ON }}$ (for the remainder of the ASTRO time period). Application example: company car park lighting, on by AstroON at sunset, off end of the evening shift at 23:00 OfF . On again at the beginning of the morning shift at 5:00 © \bigoplus_{ON} and off automatically by AstroOFF*.

I

Power-save mode

If the 230 V AC supply is not connected, the time switch enters power-save mode: only the clock is maintained active whilst the display turns off so as to guarantee a long life for the built-in back-up battery. With a press to the joystick it is possible to "awake" the device and enter Display mode (with the "plug" symbol displayed). A further press to © will enter the program or set-up mode as explained in the Display mode section above.
After about 1 minute of inactivity the power-save mode will start again. During program or set-up the current absorption is higher than in power-save mode, thus influencing the battery life.
In this mode the display back-light is not active. It is activated following a press to the joystick only with the 230 V AC supply connected, but after about 1 minute of inactivity the display back-light will turn off,
 and to activate it again it is necessary to press the joystick again.
Note: the output relay only functions if the power supply is connected.

Features

Range of electronic staircase timers

- 17.5 mm wide
- Time setting from 30 seconds to 20 minutes
- "Zero crossing" load switching
- Wiring compatible with mechanical versions and with old type (low emission) illuminated pushbuttons
- Suitable for 3 or 4 wire systems, via "pushbutton configuration"
- 110... 125 V AC supply version available (14.81)
- Cadmium free contact material
- Can be used with illuminated push - buttons
- "Blade + cross" - both flat blade and cross head screw drivers can be used to adjust the function selector, the timing trimmer, and to disengage the 35 mm rail mounting clip
14.81/91

Screw terminal

For outline drawing see page 7
Contact specification
Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC
Rated load AC1
Rated load AC15 (230 V AC)
Nominal lamp rating: 230V incandescent/halogen W

Ordering information

Example: 14 series multi-function relay, single phase switch 1 NO (SPDT-NO) 16 A contact, supply rated at 230 VAC .

$8=35 \mathrm{~mm}$ rail (EN 60715) mount mono-function, all terminals on same side
$9=35 \mathrm{~mm}$ rail (EN 60715) mount, mono-function, 3 terminals

No. of poles

$1=$ Single phase switch, 16 A

Technical data

Insulation			
Dielectric strength between open contacts	V AC	1,000	
Other data			
Power lost to the environment			
without contact current	W	1.2	
with rated current	W	2	
Maximum cable length for push-button connection	m	200	
(박 Screw torque	Nm	0.8	
Max. wire size		solid cable	stranded cable
	mm^{2}	1x6 / 2x4	$1 \times 4 / 2 \times 2.5$
	AWG	$1 \times 10 / 2 \times 12$	1x12/2x14

Zero crossing switching

1. Lower inrush current protects and increases lamp life
2. Lower inrush current reduces the possibility of contact welding
3. The current at switch-off is also lower, reducing stress and wear on the contacts

Note
Using the type 14.91, the lamps are switched on directly by the pushbutton

Accessories

Adaptor for panel mounting, 17.5 mm wide

Wiring diagrams

Type 14.01

14.71

Red LED indication:
Continuous = relay ON
Blinking = relay OFF

3 wire connection

4 wire connection

Type 14.81 (pushbutton configuration procedure, as per the Installation manual)

Type 14.91 (the push-buttons must be rated for the load current)

Wiring diagrams - 14.01 or 14.71 without Staircase maintenance function, triggered by PIR movement detector (18 series).

3 wire connection (with 18.21.8.230.0300 or 18.31.8.230.0300 only) L

4 wire connection (with 18.21.8.230.0300 or 18.31.8.230.0300 only)
L

4 wire connection (with 18.01.8.230.0000 or 18.11.8.230.0000 only) L

Functions

Type 14.01 Functions selectable with front rotary selector

(BE) Staircase relay

On initial impulse the output contact closes and timing starts for the pre-set duration; subsequent impulses during the timing period will extend the timing period by the full pre-set value.
On expiry of the time delay, the output contact opens.
(BP) Staircase relay with early warning
On initial impulse the output contact closes and the timing starts for the pre-set duration.
After the timing period, the output contact blinks off once; 10secs later the contact blinks off twice, and after a further 10 secs the contact opens. During the pre-set and 20 second warning time, it is possible, by a further impulse, to extend the time by the full pre-set value.

(IT) Timing step relay
On initial impulse the output contact closes and timing starts for the pre-set duration; On expiry of the time delay, the output contact opens. During the timing period it is possible to immediately open the contact with a further impulse.

(IP) Timing step relay with early warning

On initial impulse the output contact closes and timing starts for the pre-set duration; After the timing period, the output contact blinks off once; 10 secs later the contact blinks off twice, and after a further 10 secs the contact opens. During the pre-set and 20 second warning time, it is possible to immediately open the output contact by a further impulse.

(RI) Step relay

After every impulse, the output contact changes state - alternately switching from open to closed and vice versa.

景 Light ON
With this function set - the output contact stays permanently closed.
NOTE: The blinking within the Early Warning functions (BP and IP) could cause re-start problems for fluorescent lamps with electromagnetic chokes (both conventional and compact types); We consequently suggest not to use such lamps with these functions.

Functions

Type 14.71 Functions selectable with front selector

3 -function front selector

θ^{0}	(1) Staircase relay + © Staircase maintenance
08	\% Light ON
b_{0}	© Staircase relay (compatible with 18 series movement detectors)

© (ㄴ) Staircase relay

On initial impulse the output contact closes and timing starts for the pre-set duration; subsequent impulses during the timing period will extend the timing period by the full pre-set value.
On expiry of the time delay, the output contact opens.

14 Staircase maintenance

An impulse of ≥ 5 seconds will close the output contact for 60 minutes, after which time the contact will open. Ideal for maintenance or cleaning activities The 60 ' timing can be interrupted by a further impulse of ≥ 5 seconds, the output contact opens.

Light ON
With this function set - the output contact stays permanently closed.

Type 14.81

Staircase relay

On initial impulse the output contact closes and timing starts for the pre-set duration; subsequent impulses during the timing period will extend the timing period by the full pre-set value.
On expiry of the time delay, the output contact opens.

"Staircase maintenance" function

An impulse of ≥ 5 seconds will close the output contact for 60 minutes, after which time the contact will open. Ideal for maintenance or cleaning activities. The 60' timing can be interrupted by a further impulse of ≥ 5 seconds, which will re-establish the staircase timer function; so on expiry of the staircase time delay, the output contact opens.

Type 14.91

Signal ON pulse

On initial impulse the output contact closes, and remain so for the duration of the preset delay. On expiry of the time delay, the output contact opens.

Outline drawings

14.81

Screw terminal

14.91

Screw terminal

Features

＂Master＋slave＂system for multiple load dimming
－Suitable for incandescent and halogen lighting loads （with or without transformer or electronic supply）
－Compatible with energy saving（CFL or LED） dimmable lamps and with all types of electromagnetic transformers
－ $0-10 \mathrm{~V}$ driving．Master Dimmer Type 15.10 is able to drive up to 32 Slaves Dimmer Type 15.11
－Use with 4 wire connection
－＂Soft＂On and Off transitions
－Selectable operating modes with or without previous light level memory（15．10）
－Staircase timer function，with＂switch－off early warning＂signalled by lamps dimming（15．10） －Linear dimming
－Thermal protection against overload，thermo－fuse for extreme protection and short－circuit protection（15．11）
－ 230 V AC supply， $50 / 60 \mathrm{~Hz}$ with automatic recognition of frequency

Screw terminal

＊When the total load exceeds 6 A，it is necessary to switch it through an external contactor
For outline drawing see page 9
＂Master Dimmer＂output specifications

Driving signal（Output mode automatically configures to match input mode of the connected Driver）	$0-10 \mathrm{~V},+35 \mathrm{~mA}$ max （Active current sourcing mode）	－
	$1-10 \mathrm{~V},-35 \mathrm{~mA}$ max （Passive cúrrent sinking mode）	－
Contact configuration A	$1 \mathrm{NO}(6 \mathrm{~A} / 230 \mathrm{VAC}) *$	－
＂Slave Dimmer＂output specifications		
Power max．W	－	400
Power min．W	－	3
Nominal lamp ratings：		
230 V incandescent or halogen W	－	$400{ }^{(1)}$
Toroidal electromagnetic transformers for LV halogen W	－	$400{ }^{(2)}$
E－core electromagnetic transformers for LV halogen W	－	$400{ }^{(2)}$
Electronic transformers（ballasts）for LV halogen W	－	$400{ }^{(1)}$
Dimmable compact fluorescent（CFL）W	－	$100{ }^{(3)}$
Dimmable 230 V LED W	－	$100{ }^{(3)}$ or（1）
Dimmable electronic transformers for LV LED W	－	$100{ }^{(1)}$
Supply specifications		
Nominal voltage（ U_{N} ）V AC（ $50 / 60 \mathrm{~Hz}$ ）	110．．． 230	230
Operating range	（0．8．．1．1） U_{N}	（0．8．．1．1） U_{N}
Stand－by power consumption W	0.5	0.5
Dimming operating modes	－	Trailing edge（－） Leading edge（T） and（呂）
Technical data		
Dimming speed（total dimming time）s	1．5．．． 10	－
Delay setting（staircase function）min	0．5．．． 20	－
Max no．of illuminated push－button（ $\leq 1 \mathrm{~mA}$ ）	15	－
Ambient temperature range ${ }^{\circ} \mathrm{C}$	－10．．．＋50	$-10 \ldots+50{ }^{(4)}$
Protection category	IP 20	IP 20
Approvals（according to type）	$C E$	CE

Note（1）Select＂trailing edge＂（\％）position on the front selector．
${ }^{(2)}$ Select＂transformer＂（ $\overline{1}{ }^{(\$)}$＂）position on the front selector．Preferably，no more than 2 transformers．
${ }^{(3)}$ Select＂leading edge＂（ ${ }_{⿳ 亠 口 冋 彡}^{\text {）}}$ ）position on the front selector，and set the appropriate minimum dimming value（dependent on lamp type）．
${ }^{(4)}$ With lamp load $>300 \mathrm{~W}$（＞ 75 W for CFL or LED lamps），adequate ventilation must be provided－a gap of 9 mm on both side of the dimmer is suggested．Use the plastic separator type 022．09．
15.11

－＂Slave＂dimmer
－1－10 V input，driven by 15.10 or by other $0-10 \mathrm{~V} / 1-10 \mathrm{~V}$ output devices
－Maximum lamp load 400 W
－ 100 W load with energy saving dimmable lamps （LED and CFL）
－Leading and trailing edge dimming methods
－＂Transformer＂function（for use with electromechanical transformers）
－Minimum dimming level setting
－ 17.5 mm wide，modular
－＂Master＂dimmer
－0－10 V／1－10 V output，usable both for driving one or more 15．11，or for directly controlling Drivers and luminaires with $0-10 \mathrm{~V} / 1-10 \mathrm{~V}$ inputs
－Multi－function（with or without memory，including specific ＂memory for CFL＂function）
－Dimming speed setting
－Staircase timer function，with
＂switch－off early warning＂ signalled by lamps dimming
－ 6 A output relay contact＊
－ 17.5 mm wide，modular
15.10

Features

Electronic step relay and dimmer for control of lighting levels

- Suitable for incandescent and halogen lighting loads (with or without transformer or electronic supply)
- Version compatible with energy saving (CFL or LED) dimmable lamps and with all types of electromagnetic transformers (15.81)
- Version compatible with 230 V LED dimmable lamps (15.51/15.91)
- Use with 3 or 4 wire connection
- "Soft" On and Off transitions
- Two selectable operating modes: with or without previous light level memory
- Step (15.51 only) or linear dimming
- Thermal protection against overload
- Thermo-fuse for extreme protection (15.81)
- 230 V AC supply, 50 or 60 Hz (15.51), $50 / 60 \mathrm{~Hz}$ with automatic recognition of frequency (15.81, 15.91)

Screw terminal

For outline drawing see page 9
Output data
Rated voltage V AC
Power max.

Power min.

Nominal lamp ratings:
230 V incandescent or halogen W
Toroidal electromagnetic transformers for LV halogen W
E-core electromagnetic transformers for LV halogen W
Electronic transformers (ballasts) for LV halogen W
$\frac{\text { Dimmable compact fluorescent (CFL) W }}{\text { Dimmable } 230 \text { V LED W }}$

Supply specifications
Nominal voltage (U_{N}) V AC $(50 / 60 \mathrm{~Hz})$
Operating range
Stand-by power consumption W
Dimming operating mode

Technical data

Ambient temperature range $\quad{ }^{\circ} \mathrm{C}$ Protection category
Approvals (according to type)

- For mounting within residential wall boxes
- Maximum lamp load 100 W
- Two operating modes
- Leading edge dimming method
- Compatible with LED dimmable lamps
15.51

- Box or panel mount
- Maximum lamp load 400 W
- Two operating modes
- Two different types for linear and step dimming
- Trailing edge dimming method

- 17.5 mm modular
- Maximum lamp load 500 W
- Multifunction
- Leading and trailing edge dimming methods (depending on the function)
- Compatible with energy saving dimmable lamps

Note

(1) Select "incandescent lamp" (
${ }^{(2)}$ One transformer only. Power-up only with the lamp load connected.
${ }^{(3)}$ Select "transformer" (10 ${ }^{(\$ 1}$) position on the front selector. Preferably, no more than 2 transformers.
(4) One transformer only.
${ }^{(5)}$ Select "CFL" (厨) position on the front selector, and set the appropriate minimum dimming value (dependent on lamp type).
${ }^{(6)}$ Only if lamps or electronic transformers are compatible with leading edge method.
(7) Only if lamps or electronic transformers are compatible with trailing edge method.
${ }^{181}$ Specific 60 Hz version available (see ordering information).
(9) It is not recommended to mount more than one dimmer in the same wall box, unless adequate ventilation is provided or the lamp load is less than 100 W (15.51) or 50 W (15.91).
${ }^{(10)}$ With lamp load > 300 W (> 75 W for CFL or LED lamps), adequate ventilation must be provided - a gap of 9 mm on both side of the dimmer is suggested. Use the plastic separator type 022.09.
Not compatible with illuminated push-buttons.

Ordering information

Example: type 15.91, Dimmer, 230 V AC.

Codes

15.10.8.230.0010 master dimmer, $50 / 60 \mathrm{~Hz}$
15.11.8.230.0400 slave dimmer, $50 / 60 \mathrm{~Hz}$
15.51.8.230.0400 step dimming, 50 Hz
15.51.8.230.0404 linear dimming, 50 Hz
15.51.8.230.0460 step dimming, 60 Hz
15.81.8.230.0500 linear dimming, $50 / 60 \mathrm{~Hz}$
15.91.8.230.0000 linear dimming, $50 / 60 \mathrm{~Hz}$

Technical data

Signaling

LED (15.10 only)		Condition
		Stand-by, output voltage <1V
		Active, output voltage $\geq 1 \mathrm{~V}$
		Short circuit or overload, output disabled
		Timing, staircase function

LED (15.11 only)		Condition
		Stand-by, input voltage <1V
		Active, input voltage $\geq 1 \mathrm{~V}$

Functions - Type 15.10 and 15.11

Type Linear dimming

Operating mode without memory: at switch-off, the light level is not memorized.
Long control pulse: The light level is progressively raised or lowered in linear way. The lowest value depending on the "minimum dimming level" regulator setting (on 15.11).
Short control pulse: Alternately switches between On and Off (maximum light level and the off state).

Operating mode with memory: the previous light level is memorized.
Long control pulse: The light level is progressively raised or lowered in linear way. The lowest value dependent on the "minimum dimming level" regulator setting (on 15.11).
Short control pulse: Alternately switches between On and Off. When switching On, the light level assumes the value set during the previous On state.
Operating mode with memory: the previous light level is memorized, specific for CFL Lamp.
Long control pulse: The light level is progressively raised or lowered in linear way. The lowest value dependent on the "minimum dimming level" regulator setting (on 15.11).
Short control pulse: Alternately switches between On and Off. When switching On, the light level reach the full value for a very short time (in order to guarantee the correct lamp turn-on), then immediately assumes the value set during the previous On state,

Staircase relay with early warning

On initial impulse the output closes and the timing starts for the pre-set duration. After the timing period (T), the output power is reduced to 50% for 10 seconds; then in the last 30 seconds it will be further reduced to the final shutdown.
During the pre-set and 40 second warning time, it is possible, by a further impulse, to extend the time by the full pre-set value.

Type of load - Type 15.11

Type of load	Selector setting	Regulator setting
- Incandescent lamps		
- 230 V halogen lamps		
- $12 / 24 \mathrm{~V}$ halogen and LED lamps with electronic		
transformer/ballast		

Functions - Types 15.51 and 15.91

| Type | Operating mode 1 (with memory): the previous light level is memorized. |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 5 . 5 1 . . . 0 4 0 0}$ | Long control pulse: The light level is progressively raised or
 lowered through a maximum of 10 incremental steps. |
| Short control pulse: Alternately switches between On and Off. | |
| When switching On, the light level assumes the value set | |
| during the previous On state. | |

Operating mode 3 (with memory): the previous light level is memorized.

Long control pulse: The light level is progressively raised or lowered.

Short control pulse: Alternately switches between On and Off. When switching On, the light level assumes the value set during the previous On state.

Operating mode 4 (without memory): on switch off, the light level is not memorized.

Long control pulse: The light level is progressively raised or Lowered.

Short control pulse: Alternately switches On or Off between the maximum light level and the off state.

Operating mode setup

Type 15.51

On 15.51 operating mode 1 or 3 (with memory) is preset, but it is possible to change it using the following sequence:
a) remove the supply voltage;
b) press the control button;
c) apply the supply to the relay, keeping the button closed for 3 second; d) on button release, the light will flash twice to indicate the selection of operating mode 2 or 4 , or flash once for operating mode 1 or 3 . Repeating the above steps will alternately change between operating modes.
| Type 15.91
On 15.91 operating mode 4 (without memory) is preset, but it is possible to change it using the following sequence:
a) remove the supply voltage;
b) press the control button;
c) apply the supply to the relay, keeping the button closed for 3 second;
d) on button release, the light will flash twice to indicate the selection of operating mode 3, or flash once for operating mode 4.
Repeating the above steps will alternately change between operating modes.

Thermal protection and signaling

LED (15.81 type only)	Supply voltage	Thermal protection
	OFF	-
	ON	-
\ldots	ON	ALARM

ALARM

The internal thermal protection (active on all dimmer types) will detect an unsafe temperature, due to overload or incorrect installation, and will turn the dimmer output off.
It is possible to turn the dimmer on, by push button, only when the temperature reduces to a safe level (after 1 to 10 minutes, depending on installation conditions) and after removing the cause of the overload.

Functions - Type 15.81
Type Linear dimming

Type of load

- Incandescent lamps
- 230 V halogen lamps
12/24 V halogen lamps
with electronic
transformer/ballast

Light dimming is realized with "phase cutting technology", which works by "cutting off" part of the mains voltage waveform in order to reduce the RMS voltage fed to the lamp. When the "cut off" part is at the beginning of each half cycle the dimming method is called Leading Edge. When it is towards the end of each half cycle, it is called Trailing Edge. These 2 methods are suitable for dimming different lamp types: Trailing Edge is, in general, more suitable for electronic transformers for low voltage lamps (halogen or LED). Leading Edge is better suited for electromagnetic transformers for LV lamps, 230 V CFL and 230 V LED lamps. Both methods are, however, suitable for dimming 230 V halogen and incandescent lamps.
In consideration of the different lamp types actually available on the market, it is suggested to refer to the technical specification indicated in page 1 and, if given, to the lamp manufacturer's recommendation.

Wiring diagrams - Types 15.10 and 15.11

This new system is modular, adaptable to every need and allows control of multiple lamps through a single control device called the "Master Dimmer" Type 15.10.8.230.0010.
The Master Dimmer, produces a $0-10 \mathrm{~V}$ signal proportional to the dimming value needed: 0 V corresponds to 0% (light off); 5 V equals $50 \%, 10 \mathrm{~V}$ corresponds to the maximum brightness (100% on).
The 0-10 V output signal terminals Yout + / Yout of the "Master Dimmer" must be connected to terminals + Yin / Yin of one or more 15.11.8.230.0400, called the "Slave Dimmers", which have the task of changing the voltage applied to the lamps and therefore their brightness.

The result is a flexible system that offers a range of solutions from the minimum configuration of a Master Dimmer and a Slave Dimmer, up to the maximum configuration of a Master Dimmer and 32 Slave Dimmers.
Each slave can drive a different lamp type, depending on the appropriate methodology, "Leading Edge" or "Trailing Edge". It can regulate halogen lamps, dimmable LED lamps, dimmable CFL lamps, electronic transformers, and electromagnetic transformers. For example, one Master Dimmer can control a Slave Dimmer with LED lamps and at the same time a second Slave Dimmer with halogen lamps, and a third with electronic transformers.

MASTER DIMMER TYPE 15.10 AND SLAVE DIMMER TYPE 15.11
It is recommended that the Master controls from one to a maximum of 32 Slave units.
The push-buttons (including illuminated push-buttons Max. 15) serve as the ON / OFF (momentary push), or when pressed for a longer time they adjust the brightness level.
Each Slave can drive a different load type.

MASTER DIMMER + 0-10 V ELECTRONIC TRANSFORMER OR BALLAST
Using only the Master Dimmer it is possible to control electronic transformers or ballasts with a $0-10 \mathrm{~V} / 1-10 \mathrm{~V}$ input (observing correct polarity). For $1-10 \mathrm{~V}$ applications it is suggested to supply the Ballast Live from terminal 14. This will ensure that the supply to the Ballast is cut-off for a signal < 1 V .
Note: Check that the rated current of the Ballast does not exceed the 6 A 230 V AC rating of terminal 14 .

BMS 0-10 V OUTPUTS + SLAVE DIMMERS

In the case of Home Automation or Building Automation systems you can use just the Slave Dimmer Type 15.11 directly controlled by the 0-10 V output of the building management system (BMS), or by 0-10 V rotary regulators.

Wiring diagrams - Types 15.51, 15.81 and 15.91
Note: remember to maintain a ground/earth connection for class 1 light fittings.

Type 15.51-3 wire connection

Type 15.91-3 wire connection

Type 15.81-3 wire connection

Type 15.51-4 wire connection

Type 15.91-4 wire connection

Type 15.81-4 wire connection

Outline drawings

15.51

Screw terminal

15.10

Screw terminal

15.91

Screw terminal

15.11

Screw terminal

15.81

Screw terminal

Accessories

Adaptor for panel mounting for types $15.10,15.11$ and 15.81 , plastic, 17.5 mm wide 020.01
020.01

022.09

060.72

$$
\text { Separator for rail mounting, plastic, } 9 \mathrm{~mm} \text { wide for types } 15.10,15.11 \text { and } 15.81
$$

18 Series - PIR movement defector 10 A

Features

PIR movement detector for internal installations

- Ceiling mounting
- Small size
- Adjustable ambient light intervention threshold
- Adjustable Light On Time
- Wide angle of survey
18.21/18.31/18.31... 0031

Screw terminal

NOTE: with 110... 125 V AC supply, the Ratings (AC1, AC15 and lamp loads) specified in pages 1 to 4 must be reduced by 50% (e.g. 500 W instead of $1,000 \mathrm{~W}$)

For outline drawings see page 8

Contact specification

Number of contacts
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load AC1
Rated load AC15 (230 V) VA
Nominal lamp rating 230 V: incandescent/halogen W
Fluorescent lamp with Electronic ballast W
Fluorescent lamp with Electromecanical ballast W
halogen or LV LED with electronic ballast W
halogen or LV LED with electromechanical ballast W
halogen or LV LED with electromechanical ballast W
Standard contact material
Supply specification
Coil specification $\quad \frac{V A C(50 / 60 ~ H z)}{D C}$

Rated power AC/DC	VA $(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$

Technical data

Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Ambient light intervention threshold lx	5... 350	5... 350	5... 350
Light on time after last detection	$10 \mathrm{~s} \ldots 12 \mathrm{~min}$	$10 \mathrm{~s} \ldots 12 \mathrm{~min}$	$30 \mathrm{~s} \ldots 35 \mathrm{~min}$
Sensing area diameter	See diagram page 7	See diagram page 7	See diagram page 7
Ambient temperature range ${ }^{\circ} \mathrm{C}$	-10...+50	-10...+50	-10...+50
Protection category	IP 40	IP 40	IP 40
Approvals (according to type)	CE		CE EHL PG

Features

Movement detector

- Extensive sensing area up to $120 \mathrm{~m}^{2}$
- Two sensing areas (type 18.51): "presence" suitable for zones of low activity, and "movement" suitable for transit areas or zones of high activity
- Modern design
- Quick installation thanks to push-in terminals
- 1 NO contact 10 A, with "zero crossing" switching
- Wall mounting compatible with 60 mm box and 3 module box

18.41/18.51/18.61
 Push-in terminal

NOTE: with 110... 125 V AC supply, the Ratings (AC1, AC 15 and lamp loads) specified in pages 1 to 4 must be reduced by 50% (e.g. 500 W instead of $1,000 \mathrm{~W}$)

For outline drawings see page 8
Contact specification
Number of contacts
Rated current/Maximum peak current A

Nominal lamp rating 230 V : incandescent/halogen W
Fluorescent lamp with Electronic ballast W
Fluorescent lamp with Electromecanical ballast W

CFL W	300	300	300
LED 230 V W	300	300	300
halogen or LV LED with electronic ballast W	300	300	300
halogen or LV LED with electromechanical ballast W	500	500	500
Standard contact material	AgSnO_{2}	AgSnO_{2}	AgSnO_{2}
Supply specification			
Coil specification V AC (50/60 Hz)	110... 230	110... 230	110... 230
Rated power VA $(50 \mathrm{~Hz}) / \mathrm{W}$	$1.5 / 1$	$1.5 / 1$	$1.5 / 1$
Operating range V AC (50/60 Hz)	96... 253	96... 253	96... 253
Technical data			
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Ambient light intervention threshold Ix	1... 500	$1 . .500$	$1 \ldots 500$
Light on time after last detection	$12 \mathrm{~s} . .35 \mathrm{~min}$	$12 \mathrm{~s} . . .35 \mathrm{~min}$	$12 \mathrm{~s} . .35 \mathrm{~min}$
Sensing area diameter	See diagram page 7	See diagram page 7	See diagram page 7
Ambient temperature range ${ }^{\circ} \mathrm{C}$	-10...+50	-10...+50	-10 ... +50
Protection category	IP 40	IP 40	IP 40
Approvals (according to type)	CE EHL		

Ordering information

Example: 18 series, PIR movement detector for internal installations, wall mounting, 1 NO (SPST-NO) 10 A contact, $120 \ldots 230 \mathrm{~V}$ AC supply.

Technical data

Insulation					
Type		18.01...18.31		18.41...18.61	
Dielectric strength between open contacts V AC		1,000		1,000	
Between supply and contact V AC		$\begin{aligned} & 1,500 \text { (types } 18.21 \ldots .0300 \\ & 18.31 \ldots 0300 \text {) } \end{aligned}$		1,500	
EMC specifications					
Type of test	Reference standard				
Electrostatic discharge	EN 61000-4-2	4 kV			
	EN 61000-4-2	8 kV			
Radiated electromagnetic field ($80 \ldots 2,000 \mathrm{MHz}$)	EN 61000-4-3	$3 \mathrm{~V} / \mathrm{m}$			
Fast transients (burst 5/50 ns, 5 and 100 kHz) on supply terminals	EN 61000-4-4	1 kV			
Voltage pulses on supply terminals common mode	EN 61000-4-5	4 kV			
(surge 1.2/50 $\mu \mathrm{s}$) differential mode	EN 61000-4-5	4 kV (2.5 kV for 18.01/11)			
Radiofrequency common on supply terminals mode voltage ($0.15 \ldots 230 \mathrm{MHz}$)	EN 61000-4-6	3 V			
Voltage dips $70 \% U_{N}, 40 \% U_{N}$	EN 61000-4-11	10 cycles			
Short interruptions	EN 61000-4-11	10 cycles			
Radiofrequency conducted emissions (0.15...30) MHz	EN 55014	class B			
Radiated emissions (30...1,000) MHz	EN 55014	class B			
Terminals					
Type		(단) Screw terminal		Push-in (see pag. 9)	
Screw torque	Nm	0.5		-	
Max. wire size		solid cable	stranded cable	solid cable	stranded cable
	mm^{2}	1x6/2x4	$1 \times 4 / 2 \times 2.5$	2.5	2.5
	AWG	$1 \times 10 / 2 \times 12$	$1 \times 12 / 2 \times 14$	14	14
Wire strip length	mm	9	9	8	8
Other data					
Power lost to the environment	without output current W	0.3			
	with rated output current W	1.4			

- Following the initial power-on, and power-on following a power interruption, the detector makes a hardware-software initialisation for approximately 30 seconds. However, the behavior of the output during this 30 seconds will depend on certain circumstances:
- If the detector was in the On state before the power interruption, and if the lighting level is (currently) below the pre-set threshold, then the output contact will immediately close when the power is re-applied, for the time delay set by the potentiometer (irrespective of whether movement is being detected).
- If the detector was in the Off state before the power interruption, or if the ambient light is currently over the pre-set threshold, then the detector will not switch-on until the end of the initialisation phase (assuming movement is then detected).

Wiring diagram

The nominal lamp rating as stated in the contact specitication applies when wiring is realized in accordance with the diagrams above. If the load is powered from a phase different to that powering the Movement detector, then a 50% reduction in the lamp rating must be considered.

Side view

> Plan view

18.21, 18.31-Ceiling mounting

18.31... 0031 - Internal ceiling installation, surface mounting

Movement and presence detector
18.01, 18.11-Ceiling mounting

18.31... 0031 - High ceilings installations

For applications with high ceilings (up to 6 meters)
18.61

Accessories

Beam limiter for $\mathbf{1 8 . 2 1}$ and 18.31 PIR movement detectors

Reduces the area of survey to 2 meters diameter (versus 8 m) at an installation height of 2.8 meters.
(Note: with the beam limiter the ambient light intervention threshold feature will be increased significantly)

(1) finder

Outline drawings
Type

Type 18.01

Type 18.11

II-2014, www.findernet.com

Main features for $18.41,18.51$ and 18.61

Push-in terminals

The push-in terminals permit the quick connection of solid wires or ferrules by their simple insertion into the terminal (A). It is possible to open the terminal to extract the wire by first pushing down on the push-button using a screwdriver or fingers (C). For stranded cable it is necessary first to open the terminal using the push button, both for the extraction (C) and insertion (B).

Double terminals for the easy "looping" between multiple 18 Series.
The Max. wire size for each terminal is $2.5 \mathrm{~mm}^{2}$.
The terminals are equipped with a test hole to take a test probe.

Settings

The ambient light intervention threshold can be set from the lowest value (about $1 \mid x$) to the optimal value for offices and working area (about 5001 x), with the possibility to exclude totally the intervention of the light sensor (set to $\infty \mid \mathrm{x}$).
To optimize energy saving, it is suggested to set the intervention threshold after consideration of the minimum natural light levels appropriate to the safety and comfort of the application.

Lux (3):

I. Min. level (about $1 \mid x$)
II. Transit area (> 10 lux)
III. Offices - work area (about 500 lx)
IV.Always ON (∞ |x)

The sensitivity control (2) is pre-set at maximum sensitivity, and this will be suitable for most applications. Setting a lower level of sensitivity will have the effect of reducing the sensing area and ignoring smaller movements which might be necessary depending on the application.

The light on time (1) following last detection can be regulated between 12 seconds to 35 minutes.
Time:
I. 12 seconds
II. 3 minutes
III. 15 minutes
IV. 35 minutes

13 Series - Electronic step/monostable relays 16 A

Features

13.01 - Electronic step/monostable relay Rail mount - 1 Pole
13.61-Multifunction step/monostable relay with reset command - Rail mount 1 Pole

- Selectable Step or Monostable operation (13.01)
- Multifunction (Step, Timing step, Monostable, Light ON) (13.61)
- Reset feature, for centralized off command (13.61)
- Set feature, for centralized on command (13.61.0.024)
- Control input can be continuously applied
- Longer mechanical and electrical life, and much quieter than electromechanical step relays
- $12 \ldots 24 \mathrm{~V} \mathrm{AC/DC}$ and $110 \ldots 240 \mathrm{~V}$ AC supply versions (13.61)
- Suitable for SELV applications and available also for supply 12 and 24 V AC/DC (13.01)
- "Zero-crossing" load switching (13.61)
- 35 mm rail (EN 60715) mount
- Cadmium free contact material
13.01/61

Screw terminal

For outline drawing see page 9
Contact specification
Contact configuration

Rated current/Maximum peak current $\quad \mathrm{A}$
Rated voltage/Maximum switching voltage V AC

Rated load AC1
Rated load AC15 (230 V AC)
Nominal lamp rating: 230V incandescent/halogen W
fluorescent tubes with electronic ballast W
fluorescent tubes with electromechanical ballast W

- 1 CO (SPDT)
- Step or monostable relay
- 35 mm rail (EN 60715) mount
- 35 mm wide

13.01

13.61

- 1 NO (SPST-NO)
- Multifunction:
- step relay
- timing step relay
- monostable relay
- light on
- Reset feature, for centralized off command
- Set feature, for centralized on command (0.024 version)
- 35 mm rail (EN 60715) mount
- 17.5 mm wide

CFL W	400		600
230V LED W	400		600
LV halogen or LED with electronic ballast W	400		600
LV halogen or LED with electromechanical ballast W	800		1,500
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)		1,000 (10/10)
Standard contact material	AgSnO_{2}		AgSnO_{2}
Supply specification			
Nominal voltage (U_{N})	110... 125	230... 240	110... 240
V DC/AC ($50 / 60 \mathrm{~Hz}$)	12	24	12... 24
Rated power AC/DC V A $50 / 60 \mathrm{~Hz}) / \mathrm{W}$	2.5/2.5		3.2/1 (8.230), 1/0.5 (0.024)
Operating range	90... 130	184... 253	90... 264
	10.8...13.2	20.6...33.6	10.2...26.4
Technical data			
Electrical life at rated load in AC1 cycles			$100 \cdot 10^{3}$
Maximum impulse duration		ous	continuous
Dielectric strength between: open contacts V AC	1,000		1,000
supply - contacts V AC	4,000		2,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-10 \ldots+60$		$-10 \ldots+60$
Protection category	IP 20		IP 20
Approvals (according to type)	CE EHL PG		

Ordering information

Example: 13 series, electronic step/monostable relay, 35 mm rail (EN 60715) mount, 1 CO (SPDT) 16 A contact, 230 V AC supply.

$012=12 \mathrm{~V} \mathrm{AC/DC} \mathrm{(13.01} \mathrm{and} 13.12$ only)
$012=12 \mathrm{~V} \mathrm{AC}$ (13.31 only)
$024=24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$ (13.01 and 13.12 only)
$024=24$ V DC (13.31 only)
$024=12 \ldots 24$ V AC/DC (13.61 only)
$125=(110 \ldots 125) \mathrm{V}$ AC (13.01 only)
$230=(230 \ldots 240) V$ AC (13.01 and 13.11)
$230=110 \ldots 240 \mathrm{~V} \mathrm{AC} \mathrm{(13.61} \mathrm{only)}$
$230=230 \vee$ AC (13.31, 13.81 and 13.91)

Technical data

Insulation	13.01 .8	13.01.0	13.11-13.12	13.31-13.61		13.81-13.91	
Dielectric strength between control circuit and supply V AC	4,000	-	-	-		-	
between control circuit and contacts V AC	4,000	4,000	-	-		-	
between R-S-A2 and contacts V AC	-	-	2,000	-		-	
between supply and contacts V AC	4,000	4,000	-	2,000		-	
between open contacts V AC	1,000	1,000	1,000	1,000		1,000	
Other data	13.01		13.11-13.12	13.31	13.61	13.81	13.91
Power lost to the environment without contact current	2.2		-	0.4	1	1.2	0.7
with rated current W	3.5		1.5	1.6	1.8	2	1.8
Max cable lenght for push-button connection m	100		100	-	200	200	100
Max. no. of illuminated push-button ($\leq 1 \mathrm{~mA}$)	-		-	-	10*	15	12
Terminals	13.01		13.11-13.12-13.31-13.61-13.81-13.91				
Max. wire size	solid cable	stranded cable	solid cable			d cable	
mm^{2}	$1 \times 6 / 2 \times 4$	$1 \times 6 / 2 \times 2.5$	$1 \times 6 / 2 \times 4$			2×2.5	
AWG	$1 \times 10 / 2 \times 12$	1x10/2x14	$1 \times 10 / 2 \times 12$			2×14	
(4) Screw torque Nm	0.8		0.8				

* For 8.230 version.

Functions

Type 13.01

Operating mode setup for type 13.91

a) Remove the supply voltage
b) Press the control button
c) Apply the supply to the relay, keeping the button closed. After 3 second, the light will flash twice to indicate the selection of the "IT" function, or flash once for "RI" function.

Wiring diagrams (13.01, 13.11, 13.12 and 13.31)

Type 13.01
Step wiring diagram
Red LED indication: Continuous = relay ON

L (+)

Type 13.11
Call \& reset relay

Type 13.01
Monostable wiring diagram
Red LED indication:
L (+)
Continuous = relay ON

Type 13.12
Call \& reset relay

Type 13.31
Connection

Wiring diagrams (13.61)

Type 13.61.8.230-Examples of multiple 4 wire connection with centralized reset pushbutton

Wiring diagrams (13.81 and 13.91)

Type 13.81
3 wire connection
Red LED indication:
Continuous = relay ON
Blinking = relay OFF

Max $15(\leq 1 \mathrm{~mA})$ illuminated push buttons

Type 13.91

3 wire connection

Max $12(\leq 1 \mathrm{~mA})$ illuminated push buttons

Type 13.81
4 wire connection
Red LED indication:
Continuous = relay ON
Blinking = relay OFF

Type 13.91
4 wire connection

Max $12(\leq 1 \mathrm{~mA})$ illuminated push buttons

Outline drawings
13.01

Screw terminal

13.12

Screw terminal

13.61

Screw terminal

13.11

Screw terminal

13.31/13.91

Screw terminal

13.81

Screw terminal

Accessories

-	[TIT	
\bullet	[ाँا	
\bullet	[TMIT	пाדחT
-	TTIT	TTMT

Sheet of marker tags for type 13.11, 13.12, 13.61 and 13.81, plastic, 72 tags, $6 \times 12 \mathrm{~mm} \mid 060.72$

Features

1 or 2 Pole 16 A Step relays for direct 35 mm rail (EN 60715) mounting

- 17.4 mm wide
- Test button with mechanical indicators
- Choice of 6 switching sequences
- AC coils and DC coils
- Identification label
- Possible to connect illuminated push buttons with the additional part 026.00
- 35 mm rail (EN 60715) mount
- Cadmium free contact material

FOR UL RATINGS SEE:
"General technical information" page V
Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltageV AC
Rated load AC1
Rated load AC 15 (230 V AC)
Nominal lamp rating:incandescent (230 V) W

compensated fluorescent (230 V) W	
uncompensated fluorescent (230 V)	
halogen (230 V) W	
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	
Coil specification	
Nominal voltage (U_{N})	V AC ($50 / 60 \mathrm{~Hz}$)
	V DC
Rated power AC/DC	VA (50 Hz)/W
Operating range	AC

Technical data

Ordering information

Example: 20 series relay, 35 mm rail (EN 60715) mount, double phase switch, 2 NO (DPST-NO) 16 A contacts, coil rated at $12 \mathrm{~V} \mathrm{DC}$, AgSnO 2 contacts.
Series
Type
$2=35 \mathrm{~mm}$ rail (EN 60715) mount
No. of poles
1 = Single phase switch 1 NO (SPST-NO)
2 = Double phase switch 2 NO (DPST-NO)
3 = Double phase switch 1 NC+ 1 NO (SPST-NO+SPST-NC)

$6=3$ sequence double phase switch 2 NO (DPST-NO)
$8=4$ sequence double phase switch 2 NO (DPST-NO)

Technical data

Insulation				
Dielectric strength between supply and contacts V AC	3,500			
between open contacts V AC	2,000			
between adjacent contacts V AC	2,000			
Other data				
Power lost to the environment with rated current and coil deenergised W	1.3 (20.21, 20.23, 20.28)		2.6 (20.22, 20.24, 20.26)	
(4)t Screw torque Nm	0.8		0.8	
	Coil terminals		Contact terminals	
Max. wire size	solid cable	stranded cable	solid cable	stranded cable
mm^{2}	$1 \times 4 / 2 \times 2.5$	$1 \times 2.5 / 2 \times 2.5$	1x6 / 2x4	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 12 / 2 \times 14$	$1 \times 14 / 2 \times 14$	$1 \times 10 / 2 \times 12$	$1 \times 12 / 2 \times 14$

If the coil is operated for a prolonged period of time, adequate ventilation of the relays must be provided - suggested gap of 9 mm between adjacent relays.

Coil specifications

DC version data

Nominal voltage U_{N}	Coil code	Operating range		Resistance	Consumption I at U_{N}
V		$\mathrm{U}_{\min }$	$\mathrm{U}_{\max }$	R	
12	9.012	10.8	13.2	27	440
24	9.024	21.6	26.4	105	230
48	9.048	43.2	52.8	440	110
110	9.110	99	121	2,330	47

AC version data

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	$\begin{gathered} \text { Consumption } \\ \text { I at } U_{N} \\ (50 \mathrm{~Hz}) \end{gathered}$
V		V	V	Ω	mA
8	8.008	6.8	8.8	4	800
12	8.012	10.2	13.2	7.5	550
24	8.024	20.4	26.4	27	275
48	8.048	40.8	52.8	106	150
110	8.110	93.5	121	590	64
120	8.120	102	132	680	54
230	8.230	196	253	2,500	28
240	8.240	204	264	2,700	27.5

Type	Number of steps	Sequence			
		1	2	3	4
20.21	2	1^{\prime}	4		
20.22	2	$)^{1} 1^{1}$	44		
20.23	2	14	$4{ }^{\prime}$		
20.24	4	$1^{1} 1^{1}$	44	$1 / 1$	$4{ }^{1}$
20.26	3	$1^{1} 1^{1}$	41	44	
20.28	4	$1^{1} 1^{\prime}$	$4{ }^{1}$	$\left.)^{\prime}\right)^{\prime}$	$11 /$

Wiring diagrams

Example: 230 V AC supply voltage.

Example: 24 V AC supply voltage.

Accessories
Module for use with illuminated push-buttons

Type 026.00
Sealed construction, 7.5 cm insulated flexible wire termination.

Example of wiring diagram of type 026.00

This module is necessary when using between 1 and a maximum of 15 illuminated push buttons in the coil circuit (Each 1.5 mA max, 230 V $\mathrm{AC})$. It must be connected in parallel to the coil of the relay.

Sheet of marker tags, plastic, 24 tags, $9 \times 17 \mathrm{~mm}$

Features

1 or 2 Pole electromechanical step relay with electrically separate coil and contact circuits

- Choice of 6 switching sequences
- Screw terminal connections
- AC coil
- Panel mount
- Cadmium free contact material

Ordering information

Example: 26 series screw terminal, panel mount relay, double phase switch 2 NO (DPST-NO) 10 A contacts, coil rated 12 V AC.

Technical data

Insulation				
Dielectric strength between supply and contacts V AC	3,500			
between open contacts V AC	2,000			
between adjacent contacts V AC	2,000			
Other data	26.01, 26.03, 26.08		26.02, 26.04, 26.06	
Power lost to the environment with rated current and coil de-energised W	0.9		1.8	
(닥) Screw torque Nm	0.8		0.8	
Max. wire size	solid cable	stranded cable	solid cable	stranded cable
mm^{2}	$1 \times 4 / 2 \times 2.5$	$1 \times 2.5 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$	$1 \times 2.5 / 2 \times 2.5$
AWG	$1 \times 12 / 2 \times 14$	$1 \times 14 / 2 \times 14$	$1 \times 12 / 2 \times 14$	$1 \times 14 / 2 \times 14$

Coil specifications

AC version data

Nominal	Coil code	Operating range		Resistance	Consumption
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	$(50 \mathrm{~Hz}$)
V		V	V	Ω	mA
12	8.012	9.6	13.2	17	370
24	8.024	19.2	26.4	70	180
48	8.048	38.4	52.8	290	90
110	8.110	88	121	1,500	40
230	8.230	184	253	6,250	20

Type	Number of steps	Sequence			
		1	2	3	4
26.01	2	\jmath^{\prime}	\uparrow		
26.02	2	$)^{1}{ }^{\prime}$	47		
26.03	2	114	$4{ }^{\prime}$		
26.04	4	$1^{1}{ }^{\prime}$	44	$)^{1} 4$	$4{ }^{\prime}$
26.06	3	$)^{\prime}{ }^{\prime}$	114	44	
26.08	4	$\left.1^{1}\right)^{1}$	$4{ }^{\prime}$	$)^{1} 1^{1}$	$1 / 4$

Wiring diagrams

Accessories

for 12 and 24 V DC control applications

Type: 026.9.012
Nominal voltage: 12 V DC
Max temperature: $+40^{\circ} \mathrm{C}$
Operating range: $(0.9 \ldots 1.1) U_{N}$
Type: 026.9.024
Nominal voltage: 24 V DC
Max temperature: $+40^{\circ} \mathrm{C}$
Operating range: $(0.9 \ldots 1.1) U_{N}$

Example of wiring for 24 V DC control application.

Module for use with illuminated push buttons (230 V AC applications)

Type 026.00
Sealed construction, 7.5 cm insulated flexible wire termination.

Example of wiring diagram of type 026.00
This module is necessary when using between 1 and a maximum of 15 illuminated push buttons in the coil circuit (Each 1 mA max, 230 VAC). It must be connected in parallel to the coil of the relay (see diagram).

Ordering information

Example: 27 series screw terminal, panel mount step relay, single phase switch 1 NO (SPST-NO) 10 A contact, coil rated 230 V AC.

$$
\begin{array}{|lllllll|l|l|l}
\hline 27.0 & 1.8 .2 & 3 & 0.0 & 0 & 0 & 0
\end{array}
$$

Series

Coil voltage

See coil specifications
Coil version
$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$

Type
$0=$ Clamp terminal
2 = Clamp terminal, with coil power limiter

No. of poles

$1=$ Single phase switch 1 NO (SPST-NO)
$5=4$ sequences double phase switch 2 NO (DPST-NO)
$6=3$ sequences double phase switch 2 NO (DPST-NO)

Technical data

Other data		27.01, 27.21		27.05, 27.06, 27.25, 27.26	
Power lost to the environment with rated current and coil de-energised	W	0.9		1.8	
(가) Screw torque	Nm	0.8		0.8	
Max. wire size		solid cable	stranded cable	solid cable	stranded cable
	mm^{2}	2×2.5	$1 \times 4 / 2 \times 2.5$	2×2.5	$1 \times 4 / 2 \times 2.5$
	AWG	2×14	$1 \times 12 / 2 \times 14$	2×14	$1 \times 12 / 2 \times 14$

Coil specifications
Types 27.01, 27.05, 27.06

Nominal voltage	Coil code	Operating range $(50 \mathrm{~Hz})$		Resistance	Consumption I at U_{N}
U_{N}		$U_{\text {min }}$	$U_{\text {max }}$	R	$(50 \mathrm{~Hz})$
V		V	V	Ω	mA
110	8.110	88	121	1,400	42.0
230	8.230	184	253	6,500	17.5

Types 27.21, 27.25, 27.26

Nominal voltage	Coil code	Operating range $(50 \mathrm{~Hz})$		Resistance	Consumption	
U_{N}		$\mathrm{U}_{\min }$	$\mathrm{U}_{\text {max }}$	R	I at $U_{N}(50 \mathrm{~Hz})$	Iat $U_{N}(50 \mathrm{~Hz})$
V		V	V	Ω	mA	mA
230	8.230	184	253	1,250	100	4

Type	Number of steps	Sequence			
		1	2	3	4
27.01/21	2	$)^{1}$	4		
27.05/25	4	$1^{\prime} 1^{\prime}$	14	41	44
27.06/26	3	$l^{\prime}{ }^{\prime}$	$1 / 4$	44	

Wiring diagram

Type 27.01/05/06

Type 27.21/25/26
L

Accessories for types 27.01, 27.05, 27.06
Module for illuminated push-button (230 V AC applications)

Type $27.0 x+027.00$

Features

25 A modular contactor-2 pole

- 17.5 mm wide
- NO contact gap $\geq 3 \mathrm{~mm}$, double break
- Continuous duty for the coil and contacts
- AC/DC silent coil (with varistor protection)
- Protective separation (reinforced insulation) between coil and contacts
- Mechanical and LED indicators as standard
- Auto-On-Off selector version available
- AgNi and AgSnO_{2} contact versions available
- Compliant with EN 61095: 2009
- Auxiliary contact module available, quick-assembly with the main contactor (1 NO + 1 NC and 2 NO versions)
- 35 mm rail (EN 60715) mount

* Contact gap $\geq 3 \mathrm{~mm}$ for NO contacts only; NC contacts $\geq 1.5 \mathrm{~mm}$ For outline drawings see page 8		
Contact specification		
Contact configuration	$2 \mathrm{NO}, 3 \mathrm{~mm}$ * (or $1 \mathrm{NO}+1 \mathrm{NC}$ or 2 NC$)$	
Rated current/Maximum peak current A	25 / 80	$25 / 120$
Rated voltage V AC	250 / 440	250 / 440
Rated load AC1 / AC-7a (per pole @ 250 V) VA	6,250	6,250
Rated current AC3 / AC-7b A	10	10
Rated load AC15 (per pole @ 230 V) VA	1,800	1,800
Single-phase motor rating (230 V AC) kW	1	1
Rated load AC5a (per pole @ 250 V) A	15	15
Rated current AC-7c A	-	10
230 V lamps rating: incandescent or halogen W	-	2,000
compact fluorescent (CFL) or LED W	-	200
electronic ballast fluorescent tubes W	-	800
electromagnetic ballast compens. fluorescent tubes W	-	500
Breaking capacity DC 1: $30 / 110 / 220 \mathrm{~V}$ A	25/5/1	25/5/1
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)
Contact material	AgNi	AgSnO_{2}
Coil specification		
Nominal voltage (U_{N}) V DC/AC ($50 / 60 \mathrm{~Hz}$)	12-24-48-60-120-230	12-24-48-60-120-230
Rated power AC/DC VA (50 Hz)/W	$2 / 2.2$	2 / 2.2
Operating range \quad DC/AC $(50 / 60 \mathrm{~Hz})$	(0.8..1.1) U_{N}	(0.8..1.1) U_{N}
Holding voltage DC/AC ($50 / 60 \mathrm{~Hz}$)	$0.4 U_{N}$	$0.4 U_{N}$
Must drop-out voltage DC/AC (50/60 Hz)	$0.1 \mathrm{U}_{\mathrm{N}}$	$0.1 U_{N}$
Technical data		
Mechanical life AC/DC cycles	$2 \cdot 10^{6}$	$2 \cdot 10^{6}$
Electrical life at rated load AC-7a cycles	$70 \cdot 10^{3}$	$30 \cdot 10^{3}$
Operate/release time ms	$30 / 20$	$30 / 20$
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV	6	6
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$	$-20 \ldots+50$
Protection category	IP20	IP20
Approvals (according to type)	CE EHL PG (1)	

Features

25 A modular contactor - 4 pole

- 35 mm wide
- NO contact gap $\geq 3 \mathrm{~mm}$, double break
- Continuous duty for the coil and contacts
- AC/DC silent coil (with varistor protection)
- Protective separation (reinforced insulation) between coil and contacts
- Mechanical and LED indicators as standard
- Auto-On-Off selector version available
- AgNi and AgSnO_{2} contact versions available
- Compliant with EN 61095: 2009
- Auxiliary contact module available, quick-assembly with the main contactor ($1 \mathrm{NO}+1 \mathrm{NC}$ and 2 NO versions)
- 35 mm rail (EN 60715) mount
22.34... $1 \times x 0 / 22.34 \ldots 4 x x 0$

Screw terminal

* Contact gap $\geq 3 \mathrm{~mm}$ for NO contacts only; NC contacts $\geq 1.5 \mathrm{~mm}$
For outline drawings see page 8
Contact specification
Contact configuration
Rated current/Maximum peak current A

Rated load AC1 / AC-7a (per pole @ 250 V) VA
Rated current AC3 / AC-7b

Rated load AC15 (per pole @ 230 V) VA
Three-phase motor rating (400-440 V AC) kW

Rated load AC5a (per pole @ 250 V) A
Rated current AC-7c A
230 V lamps rating: incandescent or halogen W compact fluorescent (CFL) or LED W
electronic ballast fluorescent tubes W electromagnetic ballast compens. fluorescent tubes W
Breaking capacity $\mathrm{DC1}: 30 / 110 / 220 \mathrm{~V}$ A
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Contact material
Coil specification

Nominal voltage $\left(U_{N}\right)$	V DC/AC $(50 / 60 \mathrm{~Hz})$
Rated power AC/DC	$\operatorname{VA}(50 \mathrm{~Hz}) / \mathrm{W}$

Operating range \quad DC/AC $(50 / 60 \mathrm{~Hz})$	(0.8..1.1) U_{N}	(0.8...1.1) U_{N}
Holding voltage \quad DC/AC (50/60 Hz)	$0.4 U_{N}$	$0.4 U_{N}$
Must drop-out voltage DC/AC (50/60 Hz)	$0.1 U_{N}$	$0.1 \mathrm{U}_{\mathrm{N}}$
Technical data		
Mechanical life AC/DC cycles	$2 \cdot 10^{6}$	$2 \cdot 10^{6}$
Electrical life at rated load AC-7a cycles	$150 \cdot 10^{3}$	$30 \cdot 10^{3}$
Operate/release time ms	18/40	18/40
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV	6	6
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$	$-20 \ldots+50$
Protection category	IP20	IP20
Approvals (according to type)	c EHL P	

22.34.0.xxx. $1 \times x 0$

- AgNi contacts, specifically intended for resistive and slightly inductive loads as well as for motor loads

22.34.0.xxx.4xx0

- AgSnO_{2} contacts, specifically intended for lamp loads and for high inrush current loads

Ordering information

Exemple: 22 series, modular contactor $25 \mathrm{~A}, 4 \mathrm{NO}$ contacts, coil $230 \mathrm{~V} \mathrm{AC/DC}$,AgSnO 2 contacts, Auto-On-Off selector + mechanical indicator + LED.

Type	Coil version	A	B	C	D
22.32	AC/DC	$\mathbf{1 - 4}$	$\mathbf{3 - 4 - 5}$	$\mathbf{2 - 4}$	0
22.34	AC/DC	$\mathbf{1 - 4}$	$\mathbf{3 - 6 - 7}$	$\mathbf{2 - 4}$	0
22.44	AC/DC	$\mathbf{4}$	$\mathbf{3 - 6 - 7}$	$\mathbf{1}$	0
22.64	AC/DC	$\mathbf{4}$	$\mathbf{3 - 6 - 7}$	$\mathbf{1}$	0

Options

Auto-On-Off selector + mechanical indicator + LED (xx40 option)

Options
lechanical indicator

Technical data

Insulation		22.32 / 22.34		22.44 / 22.64
Rated insulation voltage	V AC	250	440	440
Pollution degree		3 *	2	3
Insulation between coil and contact set				
Type of insulation		Reinforced		Reinforced
Overvoltage category		III		III
Rated impulse voltage	kV (1.2/50 s)	6		4
Dielectric strength	\checkmark AC	4,000		2,000
Insulation between adjacent contacts				
Type of insulation		Basic		Basic
Overvoltage category		III		III
Rated impulse voltage	kV (1.2/50 $\mathrm{s}^{\text {s }}$	4		4
Dielectric strength	\checkmark AC	2,500		2,000
Insulation between open contacts		NO contact	NC contact	NO/NC contacts
Contact gap	mm	3	1.5	3
Overvoltage category		III	II	III
Rated impulse voltage	kV (1.2/50 s)	4	2.5	4
Dielectric strength	V AC/kV (1.2/50 $\mu \mathrm{s}$)	2,500/4	2,000/3	2,000/3

* Only for versions without Auto-On-Off selector. For versions with Auto-On-Off selector pollution degree 2 applies.

Conducted disturbance immunity		Reference standard				
Fast transients (burst $5 / 50 \mathrm{~ns}, 5 \mathrm{kHz}$) at coil terminals		EN 61000-4-4		Level $4(4 \mathrm{kV})$		Level 2 (2 kV)
Voltage pulses (surge 1.2/50 ss) at supply terminals (differential mode)		EN 61000-4-5		Level 4 (4 kV)		Level 2 (2 kV)
Short circuit protection		22.32 / 22.34		22.44		22.64
Rated conditional short circuit current	kA	3		3		3
Back-up fuse	A	32 (gL/gG type)		63		80
Terminals		Solid and stranded cable				
		22.32 / 22.34			22.44 / 22.64	
Max. wire size - contact terminals	mm^{2}	$1 \times 6 / 2 \times 4$			1×25 (solid) - 1x16 (stranded)	
	AWG	$1 \times 10 / 2 \times 12$			1×4 (solid) - 1×6 (stranded)	
Max. wire size - coil terminals	mm^{2}	$1 \times 4 / 2 \times 2.5$			1×2.5	
	AWG	$1 \times 12 / 2 \times 14$			1×14	
Min. wire size - contact and coil terminals	mm^{2}	1×0.2			1×1 (coil) - 1×1.5 (contacts)	
	AWG	1×24			1×18 (coil) - 1×16 (contacts)	
(4)⿹ㅏ) Screw torque	Nm	0.8			1.2 (coil terminals) - 3.5 (contact terminals)	
Wire strip length	mm	9			10	
Other data		22.32	22.34		22.44	22.64
Vibration resistance (10...150) Hz	g	4	4		3	3
Shock resistance	g	10	10		15	15
Power lost to the environment	without contact current W	2	2		5	5
	with rated current W	4.8	6.3		17	37

NOTE

22.32/22.34: It is suggested an air gap of 9 mm between adjacent relays for installations and working conditions close to the limit (that is, ambient temperature $>40^{\circ} \mathrm{C}$, coil operated for a prolonged period of time, all contacts loaded with current $>20 \mathrm{~A}$).
22.44/22.64: The maximum ambient temperature with 3 adjacent contactors is $+40^{\circ} \mathrm{C}$; when more than 3 contactors are installed, it is necessary an air gap of 9 mm .
With 2 adjacent contactors the maximum ambient temperature is $+55^{\circ} \mathrm{C}$; when more than 2 contactors are installed, it is necessary an air gap of 9 mm .

Contact specification
Ratings and utilization categories according to EN 61095: 2009

\left.| Type | Utilization category | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | AC-7a | | AC-7b | | | | |$\right)$

Utilization category: AC-7a $=$ Slightly inductive loads $(\cos \varphi=0.8)$
AC-7b $=$ Motor loads; $(\cos \varphi=0.45$, Imaking= $6 x$ lbreaking $)$
AC-7c $=$ Compensated electric discharge lamps $(\cos \varphi=0.9, C=10 \mathrm{mF} / \mathrm{A})$

H 22 - Maximum DC1 breaking capacity - Type 22.32 / 22.34

H 22 - Maximum DC1 breaking capacity - Type 22.44 / 22.64

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of ≥ 100. 10^{3} can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications
AC/DC version data (type 22.32)

Nominal	Coil code	Operating range		Rated coil consumption I_{N} at $U_{N}(A C)$
voltage				
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	
V		V	V	mA
12	0.012	9.6	13.2	165
24	0.024	19.2	26.4	83
48	0.048	38.4	52.8	42
60	0.060	48	66	33
120	0.120	88	138	16.5
(110...125)				
230				
(230...240 AC)	0.230			8.7
(220 DC)		176 (DC)	242 (DC)	

AC/DC version data (type 22.44 / 22.64)

$\begin{array}{c}\text { Nominal } \\ \text { voltage } \\ U_{N}\end{array}$	Coil	Operating range		Rated coil
consumption				
V				

AC/DC version data (type 22.34)

$\begin{array}{c}\text { Nominal } \\ \text { voltage } \\ U_{N}\end{array}$	Coil	$\begin{array}{c}\text { Operating range } \\ \text { code }\end{array}$		$\begin{array}{c}\text { Rated coil } \\ \text { consumption }\end{array}$	
V					

R 22 - Coil operating range v ambient temperature

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

Wiring diagrams

Line and neutral switched

Outline drawings
Type 22.32
Screw terminal

Type 22.34
Screw terminal

Type 22.44 / 22.64 Screw terminal

Type 022.33 / 022.35
Screw terminal

L

Type $22.32+022.33 / 022.35$
Screw terminal

Type $22.34+022.33 / 022.35$
Screw terminal

Type $22.44 / 22.64+022.63 / 022.65$ Screw terminal

Type 022.63 / 022.65
Screw terminal

Auxiliary modules Mechanically linked contacts according to Annex of EN 6947-5-1

NOTE: it is not possible to assembly the auxiliary module on 22.32.0.xxx.x4x0 (2 NC versions).

Accessories

Adaptor for panel mounting (for 22.32 type), plastic, 17.5 mm wide 020.01

Adaptor for panel mounting (for 22.34 type), plastic, 35 mm wide

060.72

Sheet of marker tags, plastic, 72 tags, $6 \times 12 \mathrm{~mm}$
060.72

Identification tag, plastic, 1 tag, $17 \times 25.5 \mathrm{~mm}$
019.01
019.01

022.09

Separator for rail mounting, plastic, 9 mm wide
022.09

8-way jumper link for type 22.32, 17.5 mm wide	022.18 (blue)
Rated values	$10 \mathrm{~A}-250 \mathrm{~V}$

Features

Digital room thermostat

- Independently set temperatures for Day and Night
- Temperature range $(+5 \ldots+37)^{\circ} \mathrm{C}$
- Supply voltage: 3V DC
(2 batteries 1.5V DC AAA)
- Thermostat lock
- Functions: OFF (with Frost protection)/ Summer/Winter
- Frost protection range $(+2 \ldots+8)^{\circ} \mathrm{C}$
- 1 change over 5 A 250 V AC output
- On/Off hysteresis selectable $(0.2-0.5)^{\circ} \mathrm{C}$

Colour

White basic
Black basic

White
White, pearl effect
Metallic Grey
Metallic Silver
Metallic Anthracite
Titanium
Technical features
Sensing element

Supply	2 batteries 1.5V AAA
Contact configuration	1 CO (SPDT)
Contact rating	5A 250V AC
Display range	$0 . .+50^{\circ} \mathrm{C}$
Temperature setting range	$+5 \ldots+37^{\circ} \mathrm{C}$
Temperature differential	0.2-0.5
Temperature rate of change	-
Nighttime set-back	YES
Thermostat lock	Buttons
Protection category	IP20
Mounting	Surface
Display resolution	$0.1{ }^{\circ} \mathrm{C}$
Accuracy at $+20^{\circ} \mathrm{C}$	$+/-0.5^{\circ} \mathrm{C}$
Frost Protection	$+2 \ldots+8^{\circ} \mathrm{C}$
Approvals (according to type)	C \in EH[

1 T. 31

$1 T .31 .9 .003 .0000$
$1 T .31 .9 .003 .2000$
$1 T .31 .9 .003 .0100$
$1 T .31 .9 .003 .0200$
$1 T .31 .9 .003 .1100$
$1 T .31 .9 .003 .1200$
$1 T .31 .9 .003 .2100$
$1 T .31 .9 .003 .2200$

NTC
2 batteries 1.5 V AAA

5A 250V AC
$0 . .+50^{\circ} \mathrm{C}$
$+5 \ldots+37^{\circ} \mathrm{C}$
0.2-0.5

YES

IP20
Surface
$0.1^{\circ} \mathrm{C}$
$+2 \ldots+8^{\circ} \mathrm{C}$
C \in ERI

Features

Digital room thermostat

- Temperature regulation from 5 to $33^{\circ} \mathrm{C}$
- Supply voltage: 3V DC
(2 batteries 1.5V DC AAA)
- Functions: OFF (with Frost protection)/ Summer/Winter
- Programming: Day/Night (set-back by $-3^{\circ} \mathrm{C}$)
- 1 change over 5A 250 V AC output
- Temperature setting range can be restricted, by internal mechanical blocking
- Display with:
- Set temperature, actual temperature
- low battery
- SUMME/WINTER setting active
- Heater/Air-conditioning ON

Colour

White basic	1T.41.9.003.0000
Black basic	1T.41.9.003.2000
Technical features	
Sensing element	NTC
Supply	2 batteries 1.5V AAA
Contact configuration	1 CO (SPDT)
Contact rating	5A 250V AC
Display range	$0 . . .+50^{\circ} \mathrm{C}$
Temperature setting range	$+8 \ldots+30^{\circ} \mathrm{C}$ (reducing night: Winter $+5 \ldots+27^{\circ} \mathrm{C} /$ Summer $+11 \ldots+33^{\circ} \mathrm{C}$)
Temperature differential	0.3
Temperature rate of change	-
Nightrime set-back	YES
Thermostat lock	Mechanical
Protection category	IP20
Mounting	Surface
Display resolution	$0.1{ }^{\circ} \mathrm{C}$
Accuracy at $+20^{\circ} \mathrm{C}$	$+/-0.5^{\circ} \mathrm{C}$
Frost Protection	$5^{\circ} \mathrm{C}$
Approvals (according to type)	C \in EH[

Features

Room thermostat

- Temperature regulation $(+7 \ldots+30)^{\circ} \mathrm{C}$ - System operating - indicator light

Wiring diagram
17.01 .0

Colour	
White	17.01.0
Technical features	
Sensing element	Gas bulb
Supply	-
Contact configuration	1 CO (SPDT)
Contact rating	16A 250 V AC
Display range	-
Temperature setting range	$+7 \ldots+30^{\circ} \mathrm{C}$
Temperature differential	$0.4-0.8{ }^{\circ} \mathrm{C}$
Temperature rate of change	$1^{\circ} \mathrm{C} / 15 \mathrm{~min}$
Nightrime set-back	-
Thermostat lock	Mechanical
Protection category	IP20
Mounting	Surface
Display resolution	-
Accuracy at $+20^{\circ} \mathrm{C}$	-
Frost Protection	-
Approvals (according to type)	C E EH[

Features

Room thermostat ON/OFF

- Switch ON/OFF
- Temperature regulation $(+7 \ldots+30)^{\circ} \mathrm{C}$
- System operating - indicator light

Wiring diagram
17.01 .1

Colour	
White	1T.01.1
Technical features	
Sensing element	Gas bulb
Supply	-
Contact configuration	1 CO (SPDT)
Contact rating	16 A 250 V AC
Display range	-
Temperature setting range	$+7 \ldots+30^{\circ} \mathrm{C}$
Temperature differential	$0.4-0.8{ }^{\circ} \mathrm{C}$
Temperature rate of change	$1^{\circ} \mathrm{C} / 15 \mathrm{~min}$
Nightrime set-back	-
Thermostat lock	Mechanical
Protection category	IP20
Mounting	Surface
Display resolution	-
Accuracy at $+20^{\circ} \mathrm{C}$	-
Frost Protection	-
Approvals (according to type)	C \in EH[

Features

Thermostat for recess mounting

- Compatible with 3 module box
- Temperature regulation $(+5 \ldots+30)^{\circ} \mathrm{C}$
- System operating - indicator light
- Complete with adaptor for following frames: - BTicino (series Living International)
- Gewiss (series Playbus and Playbus Young) - Vimar (series Idea and Idea Rondò)

Wiring diagram
17.51

Colour

Black basic

Technical features
1T.51.8.230

Sensing element
Supply

Contact configuration
Contact rating
1 CO (SPDT)
5A 250V AC
Display range

Temperature setting range	-
Temperature differential	$+5 \ldots+30^{\circ} \mathrm{C}$
Temperature rate of change	$0.2 \ldots 0.4^{\circ} \mathrm{C}$
Nighttime set-back	$1{ }^{\circ} \mathrm{C} / 15 \mathrm{~min}$
Thermostat lock	NO
Protection category	NO
Mounting	IP 20

Mounting	Recess (3 module box)
Display resolution	-
Accuracy at $+20^{\circ} \mathrm{C}$	-
Frost Protection	-
Approvals (according to type)	$\mathbf{C E} \in \mathbb{E R E}$

Features

Digital room chronothermostat

- TOUCH SCREEN Programmable Room Thermostat weekly programmable version
- Calendar with automatic leap year \& daylight-saving updates
- Summer/Winter switch
- 3 programmable temperature thresholds
- Functions: frost protection, automatic control, manual control, holiday program, pump anti-seizure function
- 2 level security - simple touch screen blocking or full 4-digit PIN lock
- Visual and audible confirmation of key and function entry
- Compatible with 3 module housing
- 1 contact output 5 A 250 V AC

Colour	Weekly Program
White	1C.71.9.003.0107
White, pearl effect	1C.71.9.003.0207
Metallic Grey	1C.71.9.003.1107
Metallic Silver	1C.71.9.003.1207
Metallic Anthracite	1C.71.9.003.2107
Titanium	1C.71.9.003.2207
Technical features	
Sensing element	NTC
Supply	2 batteries 1.5V AAA
Contact configuration	1 CO (SPDT)
Contact rating	5A 250V AC
Display range	$0 . . .+50^{\circ} \mathrm{C}$
Temperature setting range	$+5 \ldots+37^{\circ} \mathrm{C}$
Temperature differential	$0.1-0.9^{\circ} \mathrm{C}$
Minimum programming interval	1h - weekly
Buttons	Touch sceen
Back-light display	NO
Thermostat lock	Code
Protection category	IP20
Mounting	Surface
Display resolution	$0.1{ }^{\circ} \mathrm{C}$
Accuracy at $+20^{\circ} \mathrm{C}$	$+/-0.5^{\circ} \mathrm{C}$
Frost Protection	$+2 \ldots+8^{\circ} \mathrm{C}$
Approvals (according to type)	C \in EH[

NTC

1 CO (SPDT)
5A 250V AC
$+5 \ldots+37^{\circ} \mathrm{C}$
$0.1-0.9^{\circ} \mathrm{C}$
1h - weekly
Touch sceen

Code

Surface
$0.1^{\circ} \mathrm{C}$
$+-0.5^{\circ} \mathrm{C}$
$+2 \ldots+8^{\circ} \mathrm{C}$
C E ERI

Features

Digital "touch slide" chronothermostat

- Chronothermostat "touch slide" ultrathin

17 mm only with wide display

- Easy to use
- Summer/Winter switch
- 24 point for temperature setting
- Basic display lock or advanced with PIN, with storage of all settings
- Visual and acoustic signal for confirmation
- Minimum interval setting 15 minutes
- The weekly function allows each day to be set to, automatic mode, hand mode, or OFF
- Calibration function
- The thermostat can display, or be controlled by the external temperature using an external sensor (optional accessory)
- Input for remote control
- Dynamic icons
- Compatible with 3 module housing

Wiring diagram

1C. 61

Colour	Daily Program
White	1C.61.9.003.0101
Metallic Anthracite	1C.61.9.003.2101
Technical features	
Sensing element	NTC
Supply	2 batteries 1.5V AAA
Contact configuration	1 CO (SPDT)
Contact rating	5A 250V AC
Display range	0... $+50^{\circ} \mathrm{C}$
Temperature setting range	$+5 \ldots+37^{\circ} \mathrm{C}$ (with sliders: winter $+6 \ldots+24^{\circ} \mathrm{C} /$ summer $+18 \ldots+30^{\circ} \mathrm{C}$) $/-20 \ldots+90^{\circ} \mathrm{C}$ (with external sensor)
Temperature differential	$0.1-0.9^{\circ} \mathrm{C}$
Minimum programming interval	1h or 15 minutes - daily/weekly (weekly: only Auto, Manual and OFF mode)
Buttons	Touch screen
Back-light display	YES
Thermostat lock	Code
Protection category	IP20
Mounting	Surface
Display resolution	$0.1{ }^{\circ} \mathrm{C}$
Accuracy at $+20^{\circ} \mathrm{C}$	$+/-0.5^{\circ} \mathrm{C}$
Frost Protection	$+2 \ldots+8^{\circ} \mathrm{C}$
Approvals (according to type)	C E EH[

Accessories

External temperature sensor	01 C .61
Sensing range	$(-20 \ldots+90)^{\circ} \mathrm{C}$
Resolution	$0.1^{\circ} \mathrm{C}(-9.9 \ldots+90)^{\circ} \mathrm{C}$
	$1^{\circ} \mathrm{C}(-10 \ldots-20)^{\circ} \mathrm{C}$
Maximum cable length	m
Degree of protection	20
The 01C.61 is used to sense the temperature at a location external to the 1 C .61 chronothermostat. The 1 C .61 can either;	
display the external temperature (and regulate to its internal sensor), or display \& regulate to the external sensor temperature.	
The 01C.61 sensor communicates with the 1 C .61 chronothermostat through a dedicated digital system.	
This is the only sensor that can be used.	

Outline drawings

Wiring diagrams

Features

Digital "touch" chronothermostat

- Easy to use
- TOUCH SCREEN Programmable Room Thermostat weekly programmable version
- Calendar with automatic leap year \& daylight-saving updates
- Summer/Winter switch
- 3 programmable temperature thresholds
- Functions: frost protection, automatic control, manual control, holiday program, pump anti-seizure function
- 2 level security - simple touch screen blocking or full 3-digit PIN lock - remote control
- Compatible with 3 module housing
- 1 contact output 5 A 250 V AC
- Complete with adaptor for following frames:
- ABB series Chiara
- ABB series Mylos
- Ave series S44
- Bticino series Axolute
- Bticino series Light
- Bticino series Light tech
- Bticino series Living
- Bticino series Livinglight
- Bticino series Matix
- Gewiss series Chorus
- Vimar series Eikon
- Vimar series Eikon Evo
- Vimar series Idea
- Vimar series Plana
- Vimar series Arkè
- Adapter type 01C. 51 for Bticino Air cover plates

Wiring diagram
Colour
White
Technical features
Sensing element
Supply
Contact configuration

Contact rating	5 A 250 V AC
Display range	$0 \ldots+50^{\circ} \mathrm{C}$
Temperature setting range	$+5 \ldots+37^{\circ} \mathrm{C}$
Temperature differential	$0.1-0.9^{\circ} \mathrm{C}$
Minimum programming interval	$1 \mathrm{~h}-$ weekly
Buttons	Touch sceen
Back-light display	YES
Thermostat lock	Code
Protection category	IP20
Mounting	Recess $(3$ module box)
Display resolution	$0.1^{\circ} \mathrm{C}$
Accuracy at $+20^{\circ} \mathrm{C}$	$+/-0.5^{\circ} \mathrm{C}$
Frost Protection	$+2 \ldots+8^{\circ} \mathrm{C}$
Approvals (according to type)	$\mathbf{C E}$ EH[

Reference standards and values

Unless expressly indicated otherwise, the products shown in this catalogue are designed and manufactured according to the requirements of the following European and International Standards:

- EN 61810-1, EN 61810-2, EN 61810-7 for electromechanical elementary relays
EN 50205 for relays with forcibly guided contacts
EN 61812-1 for timers
EN 60669-1 and EN 60669-2-2 for electromechanical step relays EN 60669-1 and EN 60669-2-1 for light-dependent relays,
electronic step relays, light dimmers, staircase switches,
movement detectors and monitoring relays.
Other important standards, often used as reference for specific applications, are
EN 60335-1 and EN 60730-1 for domestic appliances
- EN 50178 for industrial electronic equipments

According to EN 61810-1, all technical data is specified under standard conditions of $23^{\circ} \mathrm{C}$ ambient temperature, 96 kPa pressure, 50% humidity, clean air and 50 Hz frequency. The tolerance for coil resistance, nominal absorption and rated power values is $\pm 10 \%$.
Unless expressly indicated otherwise, the standard tolerances for mechanical drawings are $\pm 0.1 \mathrm{~mm}$.

Operating \& installation conditions

Coil operating range: In general, Finder relays will operate over the full specified temperature range, according to:

- Class $1-80 \%$ to 110% of nominal coil voltage, or
- Class $2-85 \%$ to 110% of nominal coil voltage.

Outside the above Classes, coil operation is permitted according to the limits shown in the appropriate " R^{\prime} chart.
Unless expressly indicated otherwise, all relays are suitable for 100% Duty Cycle (continuous energisation) and all AC coil relays are suitable for 50 and 60 Hz frequency.

Excessive peak voltage limiting: Overvoltage protection (varistor for AC diode for $D C$) is recommended in parallel with the coil for nominal voltages $\geq 110 \mathrm{~V}$ for the relays of $40,41,44,46$ series.

Residual current: When AC relay coils are controlled via a proximity switch, or via cables having length > 10 m , the use of a "residual current bypass" module is recommended, or alternatively, fit a resistor of $62 \mathrm{kOhm} / 1$ watt in parallel with the coil.

Ambient temperature: The Ambient temperature as specified in the relevant specification and " R " chart relates to the immediate environment in which the component is situated, as this may be greater than the ambient temperature in which the equipment is located. Refer to page IX for more detail.

Condensation: Environmental conditions causing condensation or ice formation in the relay are not permitted.

Installed orientation: The component's specification is unaffected (unless expressly stated otherwise) by its orientation, (provided it is properly retained, eg by a retaining clip in the case of socket mounted relays).

RC contact suppression: If a resistor/capacitor network is placed across a contact to suppress arcing, it should be ensured that when the contact is open, the leakage current through the RC network does not give rise to a residual voltage across the load (typically the coil of another relay or solenoid) any greater than 10% of the load's nominal voltage - otherwise, the load may hum or vibrate, and reliability can be affected. Also, the use of an RC network across the contact will destroy the isolation normally afforded by the contact (in the open position).

Guidelines for automatic flow solder
 processes

In general, an automatic flow solder process consists of the following stages:

Relay mounting: Ensure that the relay terminals are straight and enter the PC board perpendicular to the PC board. For each relay, the catalogue illustrates the necessary PC board hole pattern (copper side view). Because of the weight of the relay, a plated through hole printed circuit board is recommended to ensure a secure fixation.

Flux application: This is a particularly delicate process. If the relay is not sealed, flux may penetrate the relay due to capillary forces, changing its performance and functionality.
Whether using foam or spray fluxing methods, ensure that flux is applied sparingly and evenly and does not flood through to the component side of the PC board.
By following the above precautions, and assuming the use of alcohol or water based fluxes, it is possible to satisfactorily use relays with protection category RT II.

Preheating: Set the preheat time and heat to just achieve the effective evaporation of the flux, taking care not to exceed a component side temperature of $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$.

Soldering: Set the height of the molten solder wave such that the PC board is not flooded with solder. Ensure the solder temperature and time are kept to $260^{\circ} \mathrm{C}\left(500^{\circ} \mathrm{F}\right)$ and 3 seconds maximum.

Cleaning: The use of modern "no-clean" flux avoids the necessity of washing the PC board. In special cases where the PC board must be washed the use of wash-tight relays (option $x x x 1$ - RT III) is strongly recommended. After cleaning it is suggested to break the pin on the relay cover. This is necessary to guarantee the electrical life at maximum load as quoted in the catalogue; otherwise ozone generated inside the relay (dependent on the switching load and frequency) will reduce the electrical life. Even so, avoid washing the relay itself, particularly with aggressive solvents or in washing cycles using low temperature water, as this may cause thermal shock to the PC board components. The user should establish compatibility between his cleaning fluid and the relay plastics.

Terminology \& definitions

All the following terms used in the catalogue are commonly used in technical language. However, occasionally, National, European or International Standards may prescribe the use of different terms, in which case these will be mentioned in the appropriate descriptions that follow.

Terminal marking

European Standard EN 50005 recommends the following numbering for the marking of relay terminals:

- . 1 for common contact terminals (e.g. 11, 21, $31 \ldots$)
- . 2 for NC contact terminals (e.g. 12, 22, 32...)
- . 4 for NO contact terminals (e.g. 14, 24, 34...)
- A1 and A2 for coil terminals
- B1, B2, B3 etc. for Signal inputs
- Z1 \& Z2 for potentiometer or sensor connection

$\text { 1. } 4_{1}^{\left.\right\|_{1}}$	$24_{.1}^{l^{2}}$	$\left.12\right\|_{14}$	$\frac{\perp_{\mathrm{A} 1}}{\mathrm{~T}_{\mathrm{A} 2}}$
Pole Number	Contact configuration Number	Example: Relay with 4 poles	
For delayed contacts of timers the numbering will be: - . 5 for common contact terminals (e.g. $15,25, \ldots$) - . 6 for NC contact terminals (e.g. 16, 26, ...) - . 8 for NO contact terminals (e.g. 18, 28,...)			

IEC 67 and American standards prescribe:
progressive numbering for terminals ($1,2,3, \ldots .13,14, .$.$) and sometimes$ A and B for coil terminals.

Contact specification

Symbol	Configuration	EU	D	GB	USA
I	Make contact (Normally Open)	NO	S	A	SPST-NO DPST-NO nPST-NO
4	Break contact (Normally Closed)	NC	Ö	B	SPST-NC DPST-NC nPST-NC
4^{\prime}	Changeover	CO	W	C	SPDT DPDT nPDT

$n=$ number of poles $(3,4, \ldots), S=1$ and $D=2$
Contact Set: The contact set comprises all the contacts within a relay.
Single contact: A contact with only one point of contact.
Twin/Bifurcated contact: A contact with two points of contact, which are effectively in parallel with each other. Very effective for switching small contact loads such as analogue, transducer, low signal or PLC input circuits.

Double break contact: A contact comprising two points of contact in series with each other. Particularly effective for switching DC loads. The same effect can be achieved by wiring two single contacts in series.

Micro interruption: Interruption of a circuit, without any specific requirements for distance or dielectric strength across the contact gap. All Finder relays comply or exceed this.

Micro disconnection: Adequate contact separation in at least one contact so as to provide functional safety. A dielectric strength requirement must be achieved across the contact gap. All Finder relays comply with this class of disconnection.

Full disconnection: Contact separation for the disconnection of conductors so as to provide the equivalent of basic insulation between those parts intended to be disconnected. There are requirements for both the dielectric strength and the dimensioning of the contact gap.
Finder relays types 45.91, 56.xx-0300, 62.xx-0300 and
$65 . x 1-0300$ comply with this category of disconnection.
Rated current: This coincides with the Limiting continuous current - the highest current that a contact can continuously carry within the prescribed temperature limits. It also coincides with the Limiting cycling capacity, i.e. the maximum current that a contact is capable of making and breaking under specified conditions. In virtually all cases the Rated current is also the current that, when associated with the Rated switching voltage, gives rise to the Rated load (AC1). (The exception being the 30 series relay).

Maximum peak current: The highest value of inrush current (≤ 0.5 seconds) that a contact can make and cycle (duty cycle ≤ 0.1) without undergoing any permanent degradation of its characteristics due to generated heat. It also coincides with the limiting making capacity.

Rated switching voltage: This is the switching voltage that when associated with the Rated current gives rise to the Rated load (AC1). The Rated load is used as the reference load for electrical life tests.

Maximum switching voltage: This represents the maximum nominal voltage that the contacts are able to switch and for the relay to meet the insulation and design requirements called for by the insulation coordination standards.

Rated load AC1: The maximum AC resistive load (in VA) that a contact can make, carry and break repeatedly, according to classification ACl (see Table 1). It is the product of rated current and rated voltage, and is used as the reference load for electrical life tests.

Rated load AC15: The maximum AC inductive load (in VA) that a contact can make, carry and break repeatedly, according to classification AC 15 (see Table 1), called "AC inductive load" in EN 61810-1:2008, Annex B.

Single-phase motor rating: The nominal value of motor power that a relay can switch.
(The figures are given in kW ; the horsepower rating can be calculated by multiplying the kW value by 1.34 i.e. $0.37 \mathrm{~kW}=0.5 \mathrm{HP}$).
Note: "inching" or "plugging" is not permitted.
If reversing motor direction, always allow an intermediate break of $>300 \mathrm{~ms}$, otherwise an excessive inrush peak current (caused from change of polarity of motor capacitor) may occur, causing contact welding.

Nominal lamp ratings: Lamp ratings for 230V AC supply for:

- Incandescent (tungsten filament) lamps
- Standard and halogen filled types
- Fluorescent lamps without power factor compensation
- Fluorescent lamps compensated to $\operatorname{Cos} \varphi \geq 0.9$ (using conventional power factor correction capacitors)
For other lamp types, such as HID, or Electronic Ballast driven fluorescent lamp loads - please enquire.

Breaking capacity DC 1 : The maximum value of DC resistive current that a contact can make, carry and break repeatedly, according to classification DC1 (see Table 1).

Minimum switching load: The minimum values of power, voltage and current that a contact can reliably switch. For example, if minimum values are 300 mW , $5 \mathrm{~V} / 5 \mathrm{~mA}$:

- with 5 V the current must be at least 60 mA ;
- with 24 V the current must be at least 12.5 mA ;
- with 5 mA the voltage must be at least 60 V .

For gold contact variants, loads no less than $50 \mathrm{~mW}, 5 \mathrm{~V} / 2 \mathrm{~mA}$ are suggested.
With 2 gold contacts in parallel, it is possible to switch 1 mW ,
$0.1 \mathrm{~V} / 1 \mathrm{~mA}$.

Electric life tests: The Electrical life at rated load AC1; as specified in the Technical data, represents the life expectancy for an AC resistive load at rated current and 250 V .
(This value can be used as the relay B_{10} value; see "Electrical life "F-chart" and "Reliability" sections).

Electrical life "F-chart": The "Electrical life (AC) v contact current" chart indicates the life expectancy for an $A C$ resistive load for different values of contact current. Some charts also indicate the results of electrical life tests for Inductive AC loads with a power factor of $\operatorname{Cos} \varphi=0.4$ (applicable for both the contact closing and opening).
In general, the reference load voltage applicable to these life expectancy charts is Un= 250 V AC. However, the life indicated can also be assumed to be approximately valid for voltages between 125 V to 277 V . Where the life expectancy chart shows a curve for 440 V , the life indicated can also be assumed to be approximately valid for voltages up to 480 V .

Note: Life, or number of cycles, from these charts can be taken as indicating the B_{10} statistical value for the purposes of reliability calculations. And, this value multiplied by 1.4 could be taken as an approximation to the related MCTF (Mean Cycles To Failure) figure. (Failure, in this case, refers to the contact "wear-out" mechanism that occurs at relatively high contact loads.)

Predicting life expectancy at voltages lower than 125 V :
For load voltages < 125 V (i.e. 110 or 24 V AC), the electrical life will rise significantly with decreasing voltage. (A rough estimate can be made using a multiplying factor of $250 / 2$ Un and applying it to the life expectancy appropriate to the 250 V load voltage).
Estimating switching current at voltages greater than 250 V : For load voltages higher than 250 V (but less than the maximum switching voltage specified for the relay), the maximum contact current should be limited to the Rated load ACl divided by the voltage being considered. For example, a relay with rated current and rated load AC1 of 16 A and 4000 VA respectively, is able to switch a maximum current of 10 A at 400 VAC : the corresponding electrical life will be approximately the same as that at 16 A 250 V .

Unless otherwise specified, the following test conditions apply:

- Tests performed at the maximum ambient temperature.
- Relay coil (AC or DC) energised at rated voltage.
- Load test applied to the NO contacts.
- Switching frequency for elementary relays: 900 cycles $/ \mathrm{h}$ with 50% duty cycle (25% for relays with rated current > 16 A and for 45.91 and 43.61 types).
- Switching frequency for step relays: 900 cycles/h for the coil, 450 cycles/h for the contact, 50% duty cycle.
- Electrical life expectancy values are valid for relays with standard contact material; data for optional materials are available on request.

Load reduction factor versus $\operatorname{Cos} \varphi$: The load current for AC loads which comprise both an inductive and resistive component can be estimated by applying a reduction factor (k) to the resistive contact current (according to the load's $\operatorname{Cos} \varphi$). Such loads should not be taken as appropriate for electric motors or fluorescent lamps, where specific ratings are quoted. They are however, appropriate for inductive loads where the current and $\operatorname{Cos} \varphi$ are substantially the same at "make" and "break", and are also widely specified by international relay standards as reference loads for performance verification and comparison.

TABLE 1 Contact load classifications (related to the utilization categories defined in EN60947-4-1 and EN60947-5-1)

Load classification	Supply type	Application	Switching with relay
AC1	AC single-phase AC three-phase	Resistive or slightly Inductive AC loads.	Work within the relay data.
AC3	AC single-phase AC three-phase	Starting and stopping of Squirrel cage motors. Reversing direction of rotation only after motor has stopped rotating. Three-phase: Motor reversal is only permitted if there is a guaranteed break of 50 ms between energisation in one direction and energisation in the other. Single-phase: Provision of 300 ms "dead break" time when neither relay contacts are closed during which time the capacitor discharges harmlessly through the motor windings.	For single-phase: keep to the relay data. For three-phase: see "Three-phase motors" section.
AC4	AC three-phase	Starting, Stopping and Reversing direction of rotation of Squirrel cage motors. Jogging (Inching). Regenerative braking (Plugging).	Not possible using relays. Since, when reversing a phase connection, severe contact arcing will occur.
AC14	AC single-phase	Control of small electromagnetic loads (<72 VA), power contactors, magnetic solenoid valves, and electromagnets.	Assume a peak inrush current of approx. 6-times rated current, and keep this within the the specified "Maximum peak current" for the relay.
AC15	AC single-phase	Control of small electromagnetic loads (>72 VA), power contactors, magnetic solenoid valves, and electromagnets.	Assume a peak inrush current of approx. 10-times rated current, and keep this within the specified "Maximum peak current" for the relay.
DC1	DC	Resistive loads or slightly inductive DC loads. (The switching voltage at the same current can be doubled by wiring 2 contacts in series).	Work within relay data (see the diagram "Maximum DC1 breaking capacity").
DC13	DC	Control of electromagnetic loads, power contactors, magnetic solenoid valves, and electromagnets.	This assumes no inrush current, although the switch off over-voltage can be up to 15 times the rated voltage. An approximation of the relay rating on a DC inductive load with $40 \mathrm{~ms} \mathrm{~L} / R$ can be made using 50% of the DC1 rating. If a freewheeling diode is wired in parallel to the load, it can be considered the same value as DC1. See the diagram "Maximum DC1 breaking capacity"

TABLE 2.1 c IUS $_{\text {US }}$ Certified products ratings
$\mathrm{R}=$ Resistive / $\mathrm{GP}=$ General Purpose $/ \mathrm{GU}=$ General Use / $\mathrm{I}=$ Inductive ($\cos \varphi 0.4) / \mathrm{B}=$ Ballast $/ \mathrm{NO}=$ NO type

Product Type	UL file No.	Ratings				Open Type Devices	Pollution degree	Max Surrounding Air Temperature
		AC/DC	"Motor Load" Single phase		Pilot Duty			
			110-120	220-240				
34.51	E106390	$6 \mathrm{~A}-250 \mathrm{Vac}(\mathrm{GP})$			B300-R300	Yes	2	$40^{\circ} \mathrm{C}$
40.31-40.51	E81856	$10 \mathrm{~A}-250 \mathrm{Vac}(\mathrm{R})$		$1 / 3 \mathrm{Hp}(250 \mathrm{~V})$	R300	Yes	1	$85^{\circ} \mathrm{C}$
40.52	E81856	$\begin{aligned} & 8 \mathrm{~A}-250 \mathrm{Vac}(\mathrm{R}) \\ & 8 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{GP}) \\ & 8 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GP}) \end{aligned}$	$1 / 6 \mathrm{Hp}$ (4.4 FLA)	$\begin{gathered} 1 / 3 \mathrm{Hp} \\ \text { (3.6 FLA) } \end{gathered}$	R300	Yes	1	$85^{\circ} \mathrm{C}$
40.61	E81856	$15 \mathrm{~A}-250 \mathrm{Vac}(\mathrm{R})$		1/2 Hp (250 V)	R300	Yes	/	$85^{\circ} \mathrm{C}$
40.31 NEW	E81856	$\begin{aligned} & 12 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{GU}) \\ & 12 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GU}) \end{aligned}$	$\begin{gathered} 1 / 3 \mathrm{Hp} \\ \text { (7.2 FLA) } \end{gathered}$	$\begin{gathered} 3 / 4 \mathrm{Hp} \\ \text { (6.9 FLA) } \end{gathered}$	B300	Yes	2 or 3	$85^{\circ} \mathrm{C}$
40.61 NEW	E81856	16 A - 277 Vac (GU) 16 A $30 \mathrm{Vdc}(\mathrm{GU})(\mathrm{AgCdO})$ $12 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GU})$ (AgNi)	$\begin{aligned} & 1 / 3 \mathrm{Hp} \\ & \text { (7.2 FLA) } \end{aligned}$	$\begin{gathered} 3 / 4 \mathrm{Hp} \\ \text { (6.9 FLA) } \end{gathered}$	B300	Yes	2 or 3	$85^{\circ} \mathrm{C}$
40.11-40.41	E81856	$\begin{gathered} 10 \mathrm{~A}-240 \mathrm{Vac}(\mathrm{R}) \\ 5 \mathrm{~A}-240 \mathrm{Vac}(\mathrm{I}) \\ 10 \mathrm{~A}-250 \mathrm{Vac}(\mathrm{GP}) \\ 8 \mathrm{~A}-24 \mathrm{Vdc} \\ 0,5 \mathrm{~A}-60 \mathrm{Vdc} \\ 0,2 \mathrm{~A}-110 \mathrm{Vdc} \\ 0,12 \mathrm{~A}-250 \mathrm{Vdc} \\ \hline \end{gathered}$	/	1/2 $\mathrm{Hp}(250 \mathrm{~V})$	$/$	Yes	1	$70^{\circ} \mathrm{C}$
41.31	E81856	$\begin{aligned} & 12 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{GU}) \\ & 12 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{R}) \end{aligned}$	$\begin{aligned} & 1 / 4 \mathrm{Hp} \\ & \text { (5.8 FLA) } \end{aligned}$	$\begin{gathered} 1 / 2 \mathrm{Hp} \\ (4.9 \mathrm{FLA}) \end{gathered}$	B300-R300	Yes	2 or 3	40 or $70^{\circ} \mathrm{C}$ with a minimum distance among relay of 5 mm
41.61	E81856	$\begin{gathered} 16 \mathrm{~A}-277 \mathrm{Vac}(G U-R) \\ 8 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{~B}) \end{gathered}$	$\begin{gathered} 1 / 4 \mathrm{Hp} \\ \text { (5.8 FLA) } \end{gathered}$	$\begin{gathered} 1 / 2 \mathrm{Hp} \\ (4.9 \mathrm{FLA}) \end{gathered}$	B300-R300	Yes	2 or 3	40 or $70^{\circ} \mathrm{C}$ with a minimum distance among relay of 5 mm
41.52	E81856	$\begin{aligned} & 8 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{GU}-\mathrm{R}) \\ & 8 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GU} ; \mathrm{NO}) \end{aligned}$		$1 / 2 \mathrm{Hp}(277 \mathrm{~V})$ (4.1 FLA)	B300	Yes	2 or 3	40 or $70^{\circ} \mathrm{C}$ with a minimum distance among relay of 5 mm
43.41	E81856	$\begin{gathered} 10 \mathrm{~A}-250 \mathrm{Vac} \\ (\mathrm{GU}-\mathrm{R}) \\ 4 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{R}) \end{gathered}$	$\begin{gathered} 1 / 4 \mathrm{Hp} \\ (5,8 \mathrm{FLA}) \end{gathered}$	$\begin{gathered} 1 / 2 \mathrm{Hp} \\ (4.9 \mathrm{FLA}) \end{gathered}$	B300-R300	Yes	2 or 3	40 or $85^{\circ} \mathrm{C}$
43.61	E81856	$\begin{gathered} 10 \mathrm{~A}-250 \mathrm{Vac} \\ (\mathrm{GU}-\mathrm{R})(\mathrm{AgCdO}) \\ 16 \mathrm{~A}-250 \mathrm{Vac} \\ (\mathrm{GU})(\mathrm{AgNi}) \\ 16 \mathrm{~A}-250 \mathrm{Vac}(\mathrm{R}) \\ (\mathrm{AgCdO}) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 4 \mathrm{Hp} \\ (5.8 \mathrm{FLA})(\mathrm{AgCdO}) \\ 1 / 3 \mathrm{Hp} \\ (7.2 \mathrm{FLA})(\mathrm{AgNi}) \end{gathered}$	$\begin{gathered} 1 / 2 \mathrm{Hp} \\ (4.9 \mathrm{FLA})(\mathrm{AgCdO}) \\ 3 / 4 \mathrm{Hp} \\ (6.9 \mathrm{FLA})(\mathrm{AgNi}) \end{gathered}$	B300-R300	Yes	2 or 3	40 or $85^{\circ} \mathrm{C}$
44.52	E81856	$6 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{R})$	$\begin{aligned} & 1 / 8 \mathrm{Hp} \\ & \text { (3.8 FLA) } \end{aligned}$	$\begin{aligned} & 1 / 3 \mathrm{Hp} \\ & \text { (3.6 FLA) } \end{aligned}$	1	Yes	1	$85^{\circ} \mathrm{C}$
44.62	E81856	$10 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{R})$	$\begin{gathered} 1 / 4 \mathrm{Hp} \\ \text { (5.8 FLA) } \end{gathered}$	$\begin{gathered} 3 / 4 \mathrm{Hp} \\ \text { (6.9 FLA) } \end{gathered}$	1	Yes	1	$85^{\circ} \mathrm{C}$
45.31	E81856	16 A - 277 Vac (GU)(Agni) 16 A - 30 Vdc (GU)(AgNi) $16 \mathrm{~A}-30 \mathrm{Vdc}$ (GU)(AgNi)	$1 / 3 \mathrm{Hp}$ $(7.2 \mathrm{FLA})$ $(\mathrm{AgNi} ; \mathrm{NO}) 1 / 3 \mathrm{Hp}$ $(7.2 \mathrm{FLA})$ $(\mathrm{AgNi} ; \mathrm{NO}) 1 / 3 \mathrm{Hp}$ $(7.2 \mathrm{FLA})$ $(\mathrm{AgNi} ; \mathrm{NO}) 1 / 3 \mathrm{Hp}$ $(7.2 \mathrm{FLA})$ $(\mathrm{AgNi} ; \mathrm{NO}) 1 / 3 \mathrm{Hp}$ (7.2 FLA) $(\mathrm{AgNi} ; \mathrm{NO})$	1 Hp (8 FLA) $(\mathrm{AgNi}) 1 \mathrm{Hp}$ (8 FLA) (AgNi)	1	Yes	2 or 3	105 or $125^{\circ} \mathrm{C}$ with a minimum distance among relay of 10 mm
45.71	E81856	16 A - 240 Vac (GU) 16 A - $30 \mathrm{Vdc}(\mathrm{GU})$ (AgCdO) 16 A - 277 Vac (GU) 16 A - 30 Vdc (NO-GU) $12 \mathrm{~A}-30 \mathrm{Vdc}$ (NC-GU) (AgNi)	$1 / 2 \mathrm{Hp}$ $(9.8 \mathrm{FLA})(\mathrm{AgCdO})(8$ $1 / 3 \mathrm{Hp}$ $(7.2 \mathrm{FLA})$ $(\mathrm{AgNi} ; \mathrm{NO})$	$\begin{array}{r} 1 \mathrm{Hp} \\ 8 \mathrm{FLA})(\mathrm{AgNi}) \end{array}$	1	Yes	2 or 3	105 or $125^{\circ} \mathrm{C}$ with a minimum distance among relay of 10 mm
45.91	E81856	$16 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{GU})(\mathrm{AgNi})$ $16 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GU})(\mathrm{AgNi})$	$1 / 6 \mathrm{Hp}$ (4.4 FLA)	$1 / 2 \mathrm{Hp}$ $(4.9 \mathrm{FLA})^{1 ⁄ 2} \mathrm{Hp}$ $(4.9 \mathrm{FLA})^{1 ⁄ 2} \mathrm{Hp}$ $(4.9 \mathrm{FLA})^{1 ⁄ 2} \mathrm{Hp}$ $(4.9 \mathrm{FLA})$	1	Yes	2 or 3	105 or $125^{\circ} \mathrm{C}$ with a minimum distance among relay of 10 mm
46.52	E81856	$\begin{gathered} 8 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{GU}) \\ 6 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{R}) \end{gathered}$	$\begin{gathered} 1 / 4 \mathrm{Hp} \\ (5.8 \mathrm{FLA}) \end{gathered}$	$\begin{gathered} 1 / 2 \mathrm{Hp} \\ (4.9 \mathrm{FLA}) \end{gathered}$	B300-R300	Yes	2 or 3	$70^{\circ} \mathrm{C}$

TABLE 2.1 c $\mathbf{I I}_{\text {US }}^{\oplus}$ Certified products ratings
$\mathrm{R}=$ Resistive $/ \mathrm{GP}=$ General Purpose $/ \mathrm{GU}=$ General Use $/ \mathrm{I}=$ Inductive $(\cos \varphi 0.4) / \mathrm{B}=$ Ballast $/ \mathrm{NO}=\mathrm{NO}$ type

Product Type	UL file No.	Ratings				Open Type Devices	Pollution degree	Max Surrounding Air Temperature
		AC/DC	"Motor Load" Single phase		Pilot Duty			
			110-120	220-240				
46.61	E81856	16A-277 Vac $12 \mathrm{~A}(\mathrm{NO})-10 \mathrm{~A}(\mathrm{NC})$ $30 \mathrm{Vdc}(\mathrm{AgNi})$ $10 \mathrm{~A}(\mathrm{NO})-8 \mathrm{~A}(\mathrm{NC})$ $30 \mathrm{Vdc}\left(\mathrm{AgSnO}_{2}\right) 30 \mathrm{Vdc}\left(\mathrm{AgSnO}_{2}\right)$ $30 \mathrm{Vdc}\left(\mathrm{AgSnO}_{2}\right) 30 \mathrm{Vdc}\left(\mathrm{AgSnO}_{2}\right)$	$\begin{gathered} 1 / 3 \mathrm{Hp} \\ (7.23 \mathrm{FLA}) \end{gathered}$	$3 / 4 \mathrm{Hp}$ $(6.9 \mathrm{FLA})$ $\mathrm{A} 300-\mathrm{R3000}$ $\left(\mathrm{AgSnO}_{2}\right)\left(\mathrm{AgSnO}_{2}\right)$ $\left(\mathrm{AgSnO}_{2}\right)\left(\mathrm{AgSnO}_{2}\right)$	$\begin{gathered} \mathrm{B} 300-\mathrm{R} 300 \\ (\mathrm{AgNi}) \end{gathered}$	Yes	2 or 3	$70^{\circ} \mathrm{C}$
50	E81856	$\begin{aligned} & 8 \mathrm{~A}-277 \mathrm{Vac} \text { (GU) } \\ & 8 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GU}) \end{aligned}$	$\begin{gathered} 1 / 3 \mathrm{Hp} \\ \text { (7.2 FLA) } \\ \text { (Only NO) } \end{gathered}$	$\begin{gathered} 1 / 2 \mathrm{Hp} \\ \text { (4.9 FLA) } \\ \text { (Only NO) } \end{gathered}$	B300 (NO)	Yes	2 or 3	$70^{\circ} \mathrm{C}$with a minimum distance among relay of 5 mm
55.X2-55.X3	E106390	$\begin{gathered} 10 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{R}) \\ 10 \mathrm{~A}-24 \mathrm{Vdc}(\mathrm{R}) \\ (55 . \mathrm{X} 2) \\ 5 \mathrm{~A}-24 \mathrm{Vdc}(\mathrm{R}) \\ (55 . \mathrm{X} 3) \end{gathered}$	$\begin{aligned} & 1 / 3 \mathrm{Hp} \\ & (7.2 \mathrm{FLA}) \end{aligned}$	$\begin{gathered} 3 / 4 \mathrm{Hp} \\ \text { (6.9 FLA) } \end{gathered}$	R300	Yes	/	$40^{\circ} \mathrm{C}$
55.X4	E106390	$7 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{GP})$ $7 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GP})$ (Std/Au contact) $5 \mathrm{~A}-277$ Vac (R) $5 \mathrm{~A}-24 \mathrm{Vdc}(\mathrm{R})$ (AgCdO contact)	$\begin{aligned} & 1 / 8 \mathrm{Hp} \\ & (3.8 \mathrm{FLA}) \end{aligned}$	$\begin{aligned} & 1 / 3 \mathrm{Hp} \\ & (3.6 \mathrm{FLA}) \end{aligned}$	R300	Yes	/	$55^{\circ} \mathrm{C}$
56	E81856	$12 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{GU})$ $12 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GU})$ $(\mathrm{AgNi} ; \mathrm{NO})$ $8 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GU})$ $(\mathrm{AgNi} ; \mathrm{NC})$ $12 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GU})$ (AgCdO) $10 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GU})$ $\left(\mathrm{AgSnO}_{2} ; \mathrm{NO}\right)(\mathrm{AgSnO} ; \mathrm{NO})$ $8 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GU})$ $\left(\mathrm{AgSnO}_{2} ; \mathrm{NC}\right)(\mathrm{AgSnO} 2 ; \mathrm{NC})$	$\begin{gathered} 1 / 2 \mathrm{Hp} \\ (9.8 \mathrm{FLA}) \end{gathered}$	$\begin{gathered} 1 \mathrm{Hp} \\ (8 \mathrm{FLA}) \end{gathered}$	B300	Yes	$2 \circ 3$	40 or $70^{\circ} \mathrm{C}$
60	E81856	$\begin{aligned} & 10 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{R}) \\ & 10 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GU}) \end{aligned}$	$\begin{aligned} & 1 / 3 \mathrm{Hp} \\ & (7.2 \mathrm{FLA}) \end{aligned}$	$\begin{gathered} 1 \mathrm{Hp} \\ (8 \mathrm{FLA}) \end{gathered}$	$\begin{gathered} \text { B300 } \\ \text { (AgNi only) } \\ \text { R300 } \end{gathered}$	Yes	$/$	$40^{\circ} \mathrm{C}$
62	E81856	$15 \mathrm{~A}-277 \mathrm{Vac}$ (GU) $10 \mathrm{~A}-400 \mathrm{Vac}$ (GU) $8 \mathrm{~A}-480 \mathrm{Vac}(\mathrm{GU})$ $15 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GU})$	$\begin{gathered} 3 / 4 \mathrm{Hp} \\ (13.8 \mathrm{FLA}) \end{gathered}$	2 Hp $(12 \mathrm{FLA})$ 1 Hp $(480 \mathrm{Vac}-3 \mathrm{f}) ;$ $(480 \mathrm{Vac}-3 \mathrm{f})$ $(2.1 \mathrm{FLA})(\mathrm{NO})$	$\begin{gathered} \mathrm{B} 300 \\ (\mathrm{AgCdO}) \\ \text { R300 } \end{gathered}$	Yes	2 or 3	40 or $70^{\circ} \mathrm{C}$
65.31 65.61 65.31 NO 65.61 NO	E81856	$\begin{aligned} & 20 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{GU}) \\ & 30 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{GU}) \end{aligned}$	$\begin{aligned} & 3 / 4 \mathrm{Hp} \\ & \text { (13.6 FLA) } \end{aligned}$	$\begin{gathered} 2 \mathrm{Hp} \\ (12.0 \mathrm{FLA}) \end{gathered}$	/	Yes	$/$	$70^{\circ} \mathrm{C}$
65.31-S 65.61-S (DC coil, NO only)		$35 \mathrm{~A}-277 \mathrm{Vac}$ (GU)	1	1				$85^{\circ} \mathrm{C}$
66	E81856	$30 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{GU})$ (NO) $10 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{GU})$ $(\mathrm{NC)}$ $24 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GU})$ (NO) $30 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GU})(\mathrm{XbXX}$ type only)	$\begin{gathered} 1 \mathrm{Hp} \\ (16.0 \mathrm{FLA}) \\ \\ (\mathrm{AgCdO}, \mathrm{NO}) \\ 1 / 2 \mathrm{Hp} \\ (9.8 \mathrm{FLA}) \\ (\mathrm{AgNi}) \end{gathered}$	$\begin{gathered} 2 \mathrm{Hp} \\ (12.0 \mathrm{FLA})(\mathrm{NO}) \end{gathered}$	1	Yes	2 or 3	$70^{\circ} \mathrm{C}$ with a minimum distance among relay of 20 mm
67	E81856	$50 \mathrm{~A}-277 \mathrm{Vac}$ (GU) $50 \mathrm{~A}-480 \mathrm{Vac}(\mathrm{GU})$ (three phases)	1	1	1	Yes	3	$\begin{gathered} 85^{\circ} \mathrm{C} \\ \left(60^{\circ} \mathrm{C}-\mathrm{PCB}\right) \end{gathered}$
70.61	E106390	$\begin{aligned} & 6 \mathrm{~A}-250 \mathrm{Vac}(\mathrm{R}) \\ & 6 \mathrm{~A}-24 \mathrm{Vdc}(\mathrm{R}) \end{aligned}$	/	1	/	Yes	2	$50^{\circ} \mathrm{C}$
20	E81856	$\begin{aligned} & 16 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{R}) \\ & 1,000 \mathrm{~W} \text { Tung. } 120 \mathrm{~V} \\ & 2,000 \mathrm{~W} \text { Tung. } 277 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 1 / 2 \mathrm{Hp} \\ (9.8 \mathrm{FLA}) \end{gathered}$	1	1	Yes	1	$40^{\circ} \mathrm{C}$
85.02-85.03	E106390	$\begin{gathered} 10 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{R}) \\ 10 \mathrm{~A}-24 \mathrm{Vdc}(\mathrm{R}) \\ (85 . \mathrm{X} 2) \\ 5 \mathrm{~A}-24 \mathrm{Vdc}(\mathrm{R}) \\ (85 . \mathrm{X} 3) \end{gathered}$	$\begin{aligned} & 1 / 3 \mathrm{Hp} \\ & (7.2 \mathrm{FLA}) \end{aligned}$	$\begin{gathered} 3 / 4 \mathrm{Hp} \\ (6.9 \mathrm{FLA}) \end{gathered}$	1	Yes	/	$40^{\circ} \mathrm{C}$
85.04	E106390	$\begin{aligned} & 7 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{GP}) \\ & 7 \mathrm{~A}-30 \mathrm{Vdc} \text { (GP) } \end{aligned}$	$\begin{aligned} & 1 / 8 \mathrm{Hp} \\ & (3.8 \mathrm{FLA}) \\ & \hline \end{aligned}$	$\begin{gathered} 1 / 3 \mathrm{Hp} \\ (3.6 \mathrm{FLA}) \\ \hline \end{gathered}$	/	Yes	/	$55^{\circ} \mathrm{C}$
$\begin{aligned} & 7 \mathrm{~T} .81 \ldots 2301 \\ & 7 \mathrm{~T} .81 \ldots . \ldots 2401 \end{aligned}$	E337851	$10 \mathrm{~A}-250 \mathrm{Vac}(\mathrm{R})$		$\begin{gathered} 1 \text { 1/2 } \mathrm{Hp}(250 \mathrm{Vac}) \\ (10 \mathrm{FLA}) \end{gathered}$	1	Yes	2	$-20 /+40^{\circ} \mathrm{C}$
$\begin{aligned} & \text { 7T. } 81 \ldots 2303 \\ & 7 \mathrm{~T} .81 \ldots 2403 \end{aligned}$	E337851	$10 \mathrm{~A}-250 \mathrm{Vac}(\mathrm{R})$		$\begin{gathered} 11 / 2 \mathrm{Hp}(250 \mathrm{Vac}) \\ (10 \mathrm{FLA}) \end{gathered}$	1	Yes	2	$0 /+60^{\circ} \mathrm{C}$
86	E106390	1	1	1	1	Yes	2	35 or $50^{\circ} \mathrm{C}$
99	E106390	1	1	1	1	Yes	2 or 3	$50^{\circ} \mathrm{C}$

TABLE 2.2 © UL Certified products ratings
$R=$ Resistive / $G P=$ General Purpose $/ ~ G U=$ General Use / $I=\operatorname{Inductive~}(\cos \varphi 0.4) / B=$ Ballast / NO = NO type

Product Type	UL file No.	Ratings				Open Type Devices	Pollution degree	Max Surrounding Air Temperature
		AC/DC	"Motor Load" Single phase		Pilot Duty			
			110-120	220-240				
22.32-22.34	E81856	$\begin{aligned} & 25-277 \mathrm{Vac}(G U) \\ & 25 \mathrm{~A}-30 \mathrm{Vdc}(\mathrm{GU}) \\ & 20 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{~B}) \end{aligned}$	$\left.\begin{array}{c}3 / 4 \mathrm{Hp} \\ (13.8 \mathrm{FLA} / 82.8 \text { LRA) } \\ (\mathrm{AgNi} ; \mathrm{NO}) \\ 1 / 2 \mathrm{Hp} \\ (9.8 \mathrm{FLA} / 5.8 \mathrm{LRA}) \\ (\mathrm{AgSnO} 2\end{array}\right)$	2 Hp (12 FLA / 72 LRA) (AgNi ; NO) 1.5 Hp (10 FLA / 60 LRA) (AgSnO_{2}; NO) Three phase (22.34 NO only) 3 Hp (9.6 FLA / 64 LRA)	A300	Yes	2	$50^{\circ} \mathrm{C}$
0.22.33-0.22.35	E81856	$5 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{GU})$			B300	Yes	2	$50^{\circ} \mathrm{C}$
72.01-72.11	E81856	$15 \mathrm{~A}-250 \mathrm{Vac}(\mathrm{R})$		$\begin{gathered} 1 / 2 \mathrm{Hp}(250 \mathrm{Vac}) \\ (4.9 \mathrm{FLA}) \\ \hline \end{gathered}$	/	Yes	2 or 3	$50^{\circ} \mathrm{C}$
77.11	E359047	$15 \mathrm{~A}-277 \mathrm{Vac}$ (GU-B)	$3 / 4 \mathrm{Hp}$	1 Hp	1	Yes	2	$45^{\circ} \mathrm{C}$
77.31	E359047	$\begin{gathered} 30 \mathrm{~A}-400 \mathrm{Vac}(\mathrm{GU}) \\ 30 \mathrm{~A}-277 \mathrm{Vac}(\mathrm{~B}) \end{gathered}$	$3 / 4 \mathrm{Hp}$	$\begin{gathered} 1 \mathrm{Hp} \\ 1 / 2 \mathrm{Hp}(480 \mathrm{Vac}) \end{gathered}$	1	Yes	2	$40^{\circ} \mathrm{C}$
80.01-11-21-41-91	E81856	8 A - 250 (R)		$\begin{gathered} 1 / 2 \mathrm{Hp}(250 \mathrm{Vac}) \\ (4.9 \mathrm{FLA}) \end{gathered}$	1	Yes	2	$40^{\circ} \mathrm{C}$
80.61	E81856	8 A - 250 (GU;R)	1	$\begin{gathered} 1 / 3 \mathrm{Hp}(250 \mathrm{Vac}) \\ (3.6 \mathrm{FLA}) \end{gathered}$	R300	Yes	2	$40^{\circ} \mathrm{C}$
80.82	E81856	$6 \mathrm{~A}-250 \mathrm{Vac}(\mathrm{GU}$;R)	1	/	B300-R300	Yes	2	$40^{\circ} \mathrm{C}$
83.X1-83.X2	E81856	$12 \mathrm{~A}-250 \mathrm{Vac}$ (GU)	1	1	1	Yes	2	$50^{\circ} \mathrm{C}$
83.62	E81856	8 A - 250 Vac (GU)	1	1	1	Yes	2	$50^{\circ} \mathrm{C}$
75	E172124	6 A - 250 Vac (GU same polarity) 6 A - $24 \mathrm{Vdc}(\mathrm{GU})$		1	B300 (NO)	Yes	1	$70^{\circ} \mathrm{C}$

Capacitor start motors: Single phase 230V AC capacitor start motors have a starting current of about 120\% of the rated current. However, damaging currents can result from an instantaneous reversal of the direction of rotation. In the first diagram, high circulating currents can cause severe arcing across the contact gap, as the changeover contacts make an almost instantaneous reversal of polarity to the capacitor. Measurements have shown a peak current of 250A for a 50 Watt motor, and up to 900A for a 500 Watt motor. This inevitably leads to welding of the contacts. Reversing the direction of such motors should therefore use two relays, as the second diagram shows, whereby in the control to the relay coils a "dead break" of approximately 300 ms is provided. The delay can either be provided by another control component such as a Timer, or through the Microprocessor etc., or by connecting a suitable NTC resistance in series with each relay coil. Cross interlocking the coil circuits of both relays will not produce the required delay! Moreover, the use of anti-weld contact material will not solve the problem.

Incorrect AC motor reversal:

Contact is in the intermediate state for less than 10 ms - insufficient time to allow the energy in the capacitor to dissipate before the electrical connection is remade to the opposite polarity.

Correct AC motor reversal:
Provision of 300 ms "dead break" time when neither relay contacts are closed - during which time the capacitor discharges harmlessly through the motor windings.

Socket type	UL ratings	CSA ratings	Open Type Devices	Pollution degree (Installation environment)	Max Surrounding Air Temperature	System Overvoltage Category (max peak Voltage impulse)	Conductors to be used	Wire size (AWG)	Terminal tightening torque
90.02/03	10A 300V	10 A 300 V (max 20A Total Load)			$70^{\circ} \mathrm{C}$				
90.14/15	10A 300V	10A 250V							
90.20/21/26/27	10A 300V	10A 250V							
90.82 .3	10A 300V	10A 300V			$70^{\circ} \mathrm{C}$			$14-20$ stranded and solid	$7.08 \mathrm{lb} . \mathrm{in}$. $(0.8 \mathrm{Nm})$
90.83 .3	10A 300V	10A 300V			$65^{\circ} \mathrm{C}$			$\begin{gathered} 14-20 \\ \text { stranded and solid } \end{gathered}$	$7.08 \mathrm{lb} . \mathrm{in}$. $(0.8 \mathrm{Nm})$
92.03	16A 300V	10A 250V (max 20A Total Load)			$70^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$ Cu only	10-24, stranded or solid	7.08 lb .in. (0.8 Nm)
92.13/33	16A 300V	10A 250V							
93.01/51	6A 300V	6A 250V			$60^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$ Cu only	14-24, stranded or solid	
93.02/52	$2 \times 10 \mathrm{~A} 300 \mathrm{~V}\left(60^{\circ} \mathrm{C}\right)$ $2 \times 8 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right)$	$\left\lvert\, \begin{gathered} 2 \times 10 \mathrm{~A} 300 \mathrm{~V}\left(60^{\circ} \mathrm{C}\right) \\ 2 \times 8 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right) \end{gathered}\right.$	Yes	2	60 or $70^{\circ} \mathrm{C}$	II (2.5 kV)	$75^{\circ} \mathrm{C}$ Cu only (CSA)		
93.11	6A 300V	6A 300V			$70^{\circ} \mathrm{C}$				
93.21	6A 300V	/	Yes	2	$70^{\circ} \mathrm{C}$				
93.60/65/66/67/68	$6 \mathrm{~A} 300 \mathrm{~V}\left(40^{\circ} \mathrm{C}\right)$ $4 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right)$	$6 \mathrm{~A} \mathrm{300V}\left(40^{\circ} \mathrm{C}\right)$ $4 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right)$			40 or $70^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$ Cu only	14-24, stranded or solid	
93.61/62/63/64/68	$6 \mathrm{~A} 300 \mathrm{~V}\left(40^{\circ} \mathrm{C}\right)$ $4 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right)$	$6 \mathrm{~A} 300 \mathrm{~V}\left(40^{\circ} \mathrm{C}\right)$ $4 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right)$			40 or $70^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$ Cu only	14-24, stranded or solid	$4.43 \mathrm{lb} . \mathrm{in}$. (0.5 Nm)
09368141	100 mA 24 V	100 mA 24 V			$70^{\circ} \mathrm{C}$				
94.02/03/04	10A 300V	10A 250V (max 20A Total Load)			$70^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$ Cu only	10-24 stranded, 12-24 solid	$\begin{gathered} 4.43 \mathrm{lb} . \mathrm{in} . \\ (0.5 \mathrm{Nm}) \end{gathered}$
94.12/13/14	10A 300 V (4 pole: 5 A 300 V)	10A 250V							
94.22/23/24	10A 300V	10 A 250 V							
94.33/34	10A 300 V (4 pole: 5 A 300 V)	10A 250V							
94.54	10A 300V		Yes		$70^{\circ} \mathrm{C}$		Copper only	$14-18-24$ stranded and solid	
94.62/64	10A 300V	10A 250V							
94.72/73/74	10A 300V	$\begin{gathered} \text { 10A } 250 \mathrm{~V} \\ \text { (94.74: max 20A } \\ \text { Total Load) } \end{gathered}$							
94.82	10 A 300 V	10A 250V							
94.82.3/92.3	10A 300V		Yes		$70^{\circ} \mathrm{C}$				
94.84.3/94.3	10A 300V		Yes		$55^{\circ} \mathrm{C}$				
94.82 .2	10 A 300 V		Yes		$50^{\circ} \mathrm{C}$				
94.84 .2	7 A 300 V		Yes		$50^{\circ} \mathrm{C}$				
95.03/05	10A 300V	10A 250V (max 20A Total Load)			$70^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$ Cu only	10-24 stranded, 12-24 solid	$\begin{gathered} 4.43 \mathrm{lb} . \mathrm{in} . \\ (0.5 \mathrm{Nm}) \end{gathered}$
95.13.2/15.2	12A 300V	$\begin{aligned} & \text { 10A } 300 \mathrm{~V} \\ & \text { (max 20A Total } \\ & \text { Load) } \end{aligned}$	Yes		$70^{\circ} \mathrm{C}$ with a minimum distance of 5 mm				
95.55/55.3	$10 \mathrm{~A} 300 \mathrm{~V}\left(40^{\circ} \mathrm{C}\right)$ $8 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 10 \mathrm{~A} 300 \mathrm{~V}\left(40^{\circ} \mathrm{C}\right) \\ & 8 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right) \end{aligned}$	Yes		40 or $70^{\circ} \mathrm{C}$			$14-24$ stranded and solid	
95.23	10A 300V	10A 250 V							
95.63/65/75	10 A 300 V	10A 250V							
$\begin{gathered} 95.83 .3 / 85.3 / \\ 93.3 / 95.3 \end{gathered}$	12A 300V		Yes		$85^{\circ} \mathrm{C}$			14-18, stranded or solid	$\begin{gathered} 7.08 \mathrm{lb} . \mathrm{in} . \\ (0.8 \mathrm{Nm}) \end{gathered}$
96.02/04	$12 \mathrm{~A} 300 \mathrm{~V}\left(50^{\circ} \mathrm{C}\right)$ $10 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 12 \mathrm{~A} 300 \mathrm{~V}\left(50^{\circ} \mathrm{C}\right) \\ & 10 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right) \end{aligned}$	Yes		50 or $70^{\circ} \mathrm{C}$	III (4.0 kV)	60/75 ${ }^{\circ} \mathrm{C}$ Cu only $75^{\circ} \mathrm{C}$ Cu only (CSA)	10-14, stranded or solid	$\begin{gathered} 7.08 \mathrm{lb} . \mathrm{in} . \\ (0.8 \mathrm{Nm}) \end{gathered}$
96.12/14	12A 300V	15A 250V							
96.72/74	15A 300V	10A 250V (max 20A Total Load)							
97.01	$16 \mathrm{~A} 300 \mathrm{~V}\left(50^{\circ} \mathrm{C}\right)$ $12 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 16 \mathrm{~A} 300 \mathrm{~V}\left(50^{\circ} \mathrm{C}\right) \\ & 12 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right) \end{aligned}$	Yes		50 or $70^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$ Cu only (CSA)		
97.02	$2 \times 8 \mathrm{~A} 300 \mathrm{~V}$	$2 \times 8 \mathrm{~A} 300 \mathrm{~V}$	Yes		$70^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$ Cu only (CSA)		
97.11	$16 \mathrm{~A} 300 \mathrm{~V}\left(50^{\circ} \mathrm{C}\right)$ $12 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right)$	/	Yes		50 or $70^{\circ} \mathrm{C}$ with a minimum distance of 5 mm				
97.12	2×8A 300V	1	Yes		$70^{\circ} \mathrm{C}$ with a minimum distance of 5 mm				
97.51-97.51.3	$\begin{aligned} & 15 \mathrm{~A} 300 \mathrm{~V}\left(40^{\circ} \mathrm{C}\right) \\ & \text { (2-wires } / \text { per pole) } \\ & 10 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 15 \mathrm{~A} 300 \mathrm{~V}\left(40^{\circ} \mathrm{C}\right) \\ & 10 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right) \end{aligned}$	Yes		40 or $70^{\circ} \mathrm{C}$			14-24 stranded and solid	
97.52-97.52.3	$10 \mathrm{~A} 300 \mathrm{~V}\left(40^{\circ} \mathrm{C}\right)$ $8 \mathrm{~A} 300 \mathrm{~V}\left(70^{\circ} \mathrm{C}\right)$	8A 300V	Yes		$70^{\circ} \mathrm{C}$			14-24 stranded and solid	

Three-phase alternating current loads: Larger three-phase alternating current loads should preferably be switched with contactors according to EN 60947-4-1 Electromechanical contactors and motor starters. Contactors are similar to relays but they have their own characteristics; typically compared to relays:

- They can normally switch different phases at the same time.
- They are physically much larger.

Their design and construction usually features double break contacts.
They can withstand certain short-circuit conditions.
There is nevertheless, some overlap between relays and contactors regarding switching characteristics and applications.
However, when switching three-phase alternating current with relays, consider and take into account:

- The isolation co-ordination, i.e. the voltage stress and the degree of pollution between the contacts according to the insulation rated voltage. - And, avoid the use of the NO relay versions with 3 mm contact gaps, unless the isolation afforded by the contact gap is specifically required.

Three-phase motors: Higher power three-phase motors are often switched by a 3-pole contactor, where there is high isolation/separation between phases. However, for space, size and other reasons, relays are also called upon to switch 3-phase motors.
TABLE 3
Motor ratings v relay series

Relay series	Motor Power $(400 ~ V ~ 3 ~ p h a s e) ~$		Permissible degree of pollution	mpulse voltage
	kW	PS(hp)		
$56.34,56.44$	0.37	0.50	2	4
$60.13,60.63$	0.80	1.10	2	4
$62.23,62.33,62.83$	1.50	1.10	2.00	3

62 series relay is also capable to switch 1 hp 480 V 3 phase motors
Reversing the motor: Take particular care if it is required to change the motor direction by reversing two of the supply phases applied to the motor terminals, as this will result in severe damage unless there is a "dead time" between the changeover. Therefore, use one relay for the forward direction and another for the reverse direction (as the following diagram). And, most importantly, ensure that there is a "dead time" of no less than 50 ms - when neither relay coil is energised. Simple cross interlocking of the relay coils will not produce a Time delay! However, choosing a tougher, anti-weld contact material may further improve the reliability and performance, and is advised.

Incorrect three-phase motor reversal:
The electrical stress of opposing phase voltages across the contact gap, together with contact arcing can result in a phase to phase short-circuit.

Correct three-phase motor reversal:
"Dead break" time of $>50 \mathrm{~ms}$, during which time neither the Forward nor the Reverse relay contacts are closed.

Notes:

1. For AC3 category (starting and switching off) - motor reversal is only permitted if there is a guaranteed break of 50 ms between energisation in one direction and energisation in the other. Observe the maximum starts per hour, according to the motor manufacturer's recommendation. 2. AC4 category (starting, plugging, reversing and inching/jogging) is not possible with relays or small contactors. In particular, the direct reversing of phase connections for "plugging" will result in severe contact arcing leading to a short-circuit within the relay or contactor. 3. Under certain circumstances it may be preferable to use three single pole relays to control each phase individually, and so achieve greater separation between the phases. (Any relatively small time difference between the operation times of the three relays is insignificant compared to the much slower operation of contactors.)

Switching different voltages within a relay: Switching different voltages in a relay e.g. 230 V AC with one contact and 24 V DC with a neighboring contact is possible -provided that the Insulation type between adjacent contacts is at least of Basic level. However, note that the equipment standard might demand a higher level that is not possible using adjacent contacts on the same relay. The possibility of using more than one relay could be considered.

Contact resistance: Measured, according to Application Category (Table 4), at the external terminals of the relay. It is a final test value, not necessarily reproducible subsequently. It has little effect on relay reliability for most applications since a typical value would be $<50 \mathrm{~m} \Omega$ (measured with 24 V 100 mA$)$.

Contact categories according to EN 61810-7: The effectiveness with which a relay contact can make an electrical circuit depends on several factors, such as the material used for the contact, its exposure to environmental pollution and its design etc.. Therefore, for reliable operation, it is necessary to specify a Contact Category, which is defined in terms of the characteristics of the load. The appropriate Contact Category will also define the voltage and current levels used to measure the contact resistance. All Finder relays are category CC2.

TABLE 4 Contact categories

Contact category	Load characteristic	Contact Resistance Measurement	
CC0	Dry circuit	30 mV	10 mA
CC1	Low load without arcing	10 V	100 mA
CC2	High load with arcing	30 V	1 A

TABLE 5 Contact materials characteristics

Material	Property	Typical application
$\mathrm{AgNi}+\mathrm{Au}$ (Silver Nickel Gold plated)	- Silver-nickel base with a galvanic hard gold plating - Gold is not attacked by industrial atmospheres - With small loads, contact resistance is lower and more consistent compared to other materials NOTE: hard gold plating is completely different to $0.2 \mu \mathrm{~m}$ gold flashing, which allows only protection in storing, but no better performance in use.	Wide range applications: - Small load range (where gold plating erodes very little) from 50 mW ($5 \mathrm{~V}-2 \mathrm{~mA}$) up to $1.5 \mathrm{~W} / 24 \mathrm{~V}$ (resistive load). - Middle load range where gold plating erodes after several operations and the property of basic AgNi becomes dominant. NOTE: for switching lower load, typically $1 \mathrm{~mW}(0.1 \mathrm{~V}-1 \mathrm{~mA})$, (for example in measuring instruments), it is recommended to connect 2 contacts in parallel.
AgNi (Silver Nickel)	- Standard contact material for most relay applications - High wear resistance - Medium resistance to welding	- Resistive and slightly inductive loads - Rated current up to 12 A - Inrush current up to 25 A
AgCdO (Silver Cadmium Oxide)	- High wear resistance with higher AC loads - Good resistance to welding	- Inductive and motor loads - Rated current up to 30 A - Inrush current up to 50 A
AgSnO_{2} (Silver Tin Oxide)	- Excellent resistance to welding	- Lamp and capacitive loads - Very high Inrush current (up to 120 A) loads

Coil specification

Nominal voltage: The nominal value of coil voltage for which the relay has been designed, and for which operation is intended. The operating and performance characteristics are with respect to the coil at nominal voltage.

Rated power: The DC power value (W) or the apparent $A C$ power value (VA with closed armature) which is absorbed by the coil at $23^{\circ} \mathrm{C}$ and at rated voltage.

Operating range: The range of input voltage, in nominal voltage applications, in which the relay works in the whole range of ambient temperatures, according to operating class:

- class $1:(0.8 \ldots 1.1) U_{N}$
- class 2: $(0.85 \ldots 1.1) U_{N}$

In application where the coil voltage doesn't meet the tolerances of nominal voltage, the diagrams " R " shows the relation of maximum coil voltage permitted and pick-up voltage (without pre-energisation) versus ambient temperature.

ENERGIZATION VOLTAGE

DE-ENERGIZATION VOLTAGE

$\left.$| 0 | must
 drop-out
 voltage | holding
 voltage | nominal
 voltage |
| :---: | :---: | :---: | :---: | | maximum |
| :---: |
| voltage | \right\rvert\,

Non-operate voltage: The highest value of input voltage at which the relay will not operate (not specified in the catalogue).

Minimum Pick-up voltage (Operate voltage): The lowest value of applied voltage at which the relay will operate.

Maximum permitted voltage: The highest applied coil voltage that the relay can continuously withstand, dependent on ambient temperature (see " R " diagrams).

Holding voltage (Non-release voltage): The lowest value of coil voltage at which the relay (which has previously been energised with a voltage within the operating range) will not drop-out.

Must drop-out voltage (Must release voltage): The highest value of coil voltage at which the relay (having previously been energised with a voltage within the operating range) will definitely drop-out.
The same "per unit" value can be applied to the nominal coil current value to give an indication of the maximum leakage current that may be permitted in the coil circuit, before problems with relay release might be expected.

Coil Resistance: The nominal value of the coil resistance under the standard prescribed condition of $23^{\circ} \mathrm{C}$ ambient. Tolerance is $\pm 10 \%$.

Rated coil consumption: The nominal value of coil current, when energized at nominal voltage (and at 50 Hz for AC coils).

Thermal tests: Calculation of the coil temperature rise (ΔT) is made by measuring the coil resistance in a temperature controlled oven (not ventilated) until a stable value is reached (no less than 0.5 K variation in 10 minutes).
That is: $\Delta T=(R 2-R 1) / R 1 \times(234.5+t 1)-(+2-t 1)$
where:
R1 = initial resistance
R2 $=$ final resistance
$\dagger 1=$ initial temperature
†2 $=$ final temperature
Monostable relay: An electrical relay which, having responded to coil energisation by changing contact state, returns to the previous contact state when the coil energisation is removed.

Bistable relay: An electrical relay, which, having responded to coil energisation by changing contact state, retains that contact state after the coil energisation has been removed. A further energisation of the coil is necessary to cause the contact state to revert.

Latching relay: A bistable relay, where the contacts retain their state due to a mechanical latching mechanism. Subsequent applications of coil energisation causes the contacts to "toggle" open and closed.

Remanence relay: A bistable relay, where the contacts retain their operated (or Set) state due to remanent magnetism in the relay iron circuit caused by the application of a DC current through the coil. Resetting the contact state is achieved by passing a smaller DC current through the coil in the opposite direction.
For AC excitation, magnetization takes place via a diode to produce a DC set current, and demagnetising is achieved by applying an AC coil current of lower magnitude.

Insulation

EN/IEC 61810-1 Relay standard:

The "Scope" of the relay standard says of itself "... IEC 61810-1 applies to electromechanical elementary relays (non-specified time all-or-nothing relays) for incorporation into equipment. It defines the basic functional requirements and safety-aspects for applications in all areas of electrical engineering or electronics, such as:

- general industrial equipment,
- electrical facilities,
- electrical machines,
- electrical appliances for household and similar use,
- information technology and business equipment,
- building automation equipment,
- automation equipment,
- electrical installation equipment,
- medical equipment,
- control equipment,
- telecommunications,
- vehicles,
- transportation (e.g. railways)..."

Relay function and Isolation: One of the main functions of a relay is to connect and disconnect different electric circuits, and usually, to maintain a high level of electrical separation between the various circuits.
It is therefore necessary to consider the level of isolation appropriate to the application and the task to be performed - and to relate this to the relay's specification.
In the case of electromechanical relays the areas of isolation generally considered are:

- Isolation between coil and all contacts (the "contact set").

Catalogue data - "Insulation between coil and contact set"

- Isolation between physically adjacent, but electrically separate, contacts of a multi-pole relay. Catalogue data - "Insulation between adjacent contacts".
- Isolation between the open contacts (applies to the NO contact, and the NC contact when the coil is energised).
Catalogue data - "Insulation between open contacts".

Specifying isolation levels

There are several ways of specifying or describing the level of isolation offered by, or demanded of, a relay. These include:
Insulation coordination, which focuses on the levels of impulse voltage likely to be seen on the supply lines of the application equipment and the cleanliness of the immediate surroundings of the relay in the equipment. And, as a consequence, it demands appropriate levels of separation between circuits, in terms of isolating distances and quality of insulating material used etc. (see additional information under "Insulation coordination")
Type of insulation; For both equipment and components such as a relay, there are several types (or levels) of insulation that might be demanded between the various circuits. The appropriate type will depend on the specific function being performed, the voltage levels involved, and the associated safety consequences. The various types of insulation are listed below, and those appropriate to each relay series are stated within the relay data; Specifically, within the table under the section entitled Technical data, sub-heading; Insulation.
Functional insulation; Insulation between conductive parts, which is necessary only for the proper functioning of the relay.
Basic insulation; Insulation applied to live parts to provide basic protection against electric shock.
Supplementary insulation; Independent insulation applied in addition to basic insulation, in order to provide protection against electric shock in the event of a failure of basic insulation.
Double insulation; Insulation comprising both basic insulation and supplementary insulation.
Reinforced insulation; A single insulation system applied to live parts,
which provides a degree of protection against electric shock equivalent to double insulation.
(Usually, the decision as to the appropriate type of insulation will have already been made by the equipment standard.)

Dielectric strength, and high voltage impulse tests; These are either, final inspection or Type tests, which prove the level of isolation in terms of the minimum voltage stress that can be withstood, between the various specified electrical circuits. As the only method of specifying and checking for adequate isolation, this tends to be the more historical approach. However, there are still some dielectric strength requirements to be found within both the Insulation coordination approach and the Level of Insulation approach.

Insulation coordination: In accordance with EN 61810-1 and IEC 60664-1:2003, the Insulation characteristics offered by a relay can be described by just two characteristic parameters - the Rated Impulse Voltage and the Pollution Degree.
To ensure the correct Insulation Coordination between the relay and the application, the equipment designer (relay user) should establish the Rated Impulse Voltage appropriate to his application, and the Pollution Degree for the microenvironment in which the relay is situated. He should then match (or coordinate) these two figures with the corresponding values given in the appropriate relay data, under the section entitled Technical data, sub-heading; Insulation.
Rated Impulse Voltage; To establish the appropriate Rated Impulse Voltage refer to the appropriate Equipment Standard which may specify mandatory values for equipment being designed. Alternatively, using the Rated Impulse Voltage table (Table 6) with knowledge of the Nominal Voltage of the Supply System and knowledge of the Overvoltage Category, determine the appropriate Rated Impulse Voltage.
Overvoltage Category; this is described in IEC 60664-1, but is also summarised in the footnotes to Rated Impulse Voltage table. Alternatively, it may be specified in the equipment standard.
Pollution Degree; determine this by considering the immediate surroundings of the relay (refer to Pollution Degree table 7). Then check that the relay specification offers the appropriate (or better) Rated Impulse Voltage and Rated Insulation Voltage, for that Pollution Degree.

Nominal voltage of supply system: This effectively describes the source of the power supply system, so $230 / 400 \mathrm{VAC}$ indicates that this would be (or is likely to be) a three-phase sub-station transformer with a Neutral connection. Being aware of the source of the supply system is important since (in conjunction with the Overvoltage category) it determines the typical levels of impulse voltage likely to be seen on the supply lines, and this has to be taken into account in the designing of the relay. However, it does not necessarily follow that the relay will be rated by the manufacturer for use at the highest voltage of the supply system. It is the declared Rated Insulation Voltage that confirms this aspect.

Rated Insulation Voltage: This is a notional value of voltage that indicates the relay's insulation as being suitable for handling voltages up to this level. Note that this notional Rated Insulation Voltage is selected from a list of preferred values. For Finder relays, 250 V and 400 V are two such preferred values, and of course they will cover respectively, the 230 V L-N and 400 V L-L voltages commonly encountered in practice.

TABLE 6 Rated impulse voltage

Nominal voltage of the supply system ${ }^{(1)} \mathbf{V}$		Rated insulation voltage V	Rated impulse voltage kV			
Three-phase	Single-phase		Overvoltage category			
systems	systems		1	II	III	IV
	120 to 240	125 to 250	0.8	1.5	2.5	4
230/400		250/400	1.5	2.5	4	6
277/480		320/500	1.5	2.5	4	6

(1) In accordance with IEC 60038.

Remark: The descriptions of overvoltage categories below are for information. The actual overvoltage category to be considered has to be taken from the product standard defining the application of the relay. Overvoltage category I Applies to equipment intended for connection to fixed installations of buildings, but where measures have been taken (either in the fixed installation or in the equipment) to limit transient overvoltages to the level indicated.
Overvoltage category II Applies to equipment intended for connection to fixed installations of buildings.
Overvoltage category III Applies to equipment in fixed installations, and for cases where a higher degree of availability of the equipment is expected.
Overvoltage category IV Applies to equipment intended for use at or near the origin of the installation, from the main distributor towards the supply mains.
TABLE 7 Pollution degree

Pollution degree	Immediate surroundings of relay 1
2	No pollution or only dry, non-conductive pollution occurs. The pollution has no influence.
3	Only non-conductive pollution occurs, except that occasionally a temporary conductivity caused by condensation is to be expected.
	Conductive pollution occurs or dry, non-conductive pollution occurs which becomes conductive due to condensation, which is to be expected.

Dependent on the product standard, pollution degree 2 and 3 are commonly prescribed for equipment. For example, EN 50178 (electronics for use in power installations) prescribes, under normal circumstances, contamination level 2.

Dielectric strength: This can be described in terms of an $A C$ voltage test, or in terms of an Impulse ($1.2 / 50 \mu \mathrm{~s}$) voltage test. (The correspondence between the AC test and Impulse voltage test is listed in IEC 60664-1 Annex A, Table A.1).
All Finder relays receive a 100% final inspection AC $(50 \mathrm{~Hz})$ dielectric strength test; applied between all contacts and coil, between adjacent contacts, and across open contacts. The leakage current must be less than 3 mA .
For Type testing, both AC and Impulse voltage dielectric strength tests are applied.

Insulation Group: This was the older Insulation Group classification (such as C250), which was according to the VDE 0110 standard. They have largely been replaced with the more recent way of specifying insulation properties, according to Insulation Coordination.

SELV, PELV and Safe separation: Insulation Coordination as described earlier ensures the isolation of hazardous voltages from other circuits to a safe engineering level, but may not be adequate on its own if the design of the equipment permits the LV circuit to be accessible and therefore able to be touched directly or, where the nature and location of the electrics presents extra dangers.
Therefore, for these extra dangerous applications (such as swimming pool lighting or bathroom electrics) there can be a need for a special low voltage supply system (SELV or PELV), that is inherently safe and highly secure, working at low voltage and with much higher levels of physical isolation and integrity between it and other hazardous circuits.

The SELV (Separated Extra Low Voltage) system is achieved by designing with double or reinforced insulation and by ensuring "safe separation" from hazardous circuits in accordance with regulations for SELV circuits. The SELV voltage (which is isolated from Ground) must be derived via a safety transformer meeting double or reinforced isolation between the windings, as well as other safety requirements demanded by the appropriate standard.
Note: The value for the "safe voltage" can differ slightly dependent upon the particular application or end product regulation.
There are specific requirements for keeping SELV circuits and wiring separate from other hazardous circuits, and it is this aspect concerning the separation of the coil to contacts that is met by several Finder relays as standard, and as a special version of the 62 series of relays - where an additional barrier is a special option.

The PELV system (Protected Extra Low Voltage), like the SELV system, requires a design that guarantees a low risk of accidental contact with a high voltage, but in contrast, it has a protective earth (ground) connection. Like SELV, the transformer can have windings separated by double or reinforced isolation, or by a conductive shield with a protected earth connection.

Consider a common situation, where the mains voltage of 230 V and a low voltage circuit both appear within a relay; all the following requirements must be met by the relay - and also applied to the connections/wiring to it.

- The low voltage and the 230 V must be separated by double or reinforced insulation. This means that between the two electrical circuits there must be guaranteed a dielectric strength of 6 kV $(1.2 / 50 \mu \mathrm{~s})$, an air distance of 5.5 mm and, depending on the pollution degree and on material used, an appropriate tracking distance.
- The electrical circuits within the relay must be protected against any possibility of bridging, caused for instance by a loose metal part.
This is achieved by the physical separation of circuits into isolated chambers within the relay.
- The different voltage wiring connected to the relay must also be physically separated from each other. This is normally achieved by using separate cable channels.
- For relays mounted on printed circuit boards the appropriate distance between the tracks connected to low voltage and the tracks connected to other voltages must be achieved. Alternatively, earth barriers can be interposed between hazardous and safe parts of the circuitry.

Although this appears quite complex, with the SELV capability/options offered by some Finder relays, the user only needs to address the two last points. And, when using a socket where the coil and contact connections are on opposite sides, the separation of wiring into different cable channels is greatly facilitated.

General technical data

Cycle: The operate and subsequent release of a relay. Over a cycle, the coil is energised and de-energised, and a (NO) contact will have progressed through a cycle of making circuit, through to breaking the circuit, back to the point at which it is just about to re-make the circuit.

Period: The time taken by one cycle.
Duty factor (DF): During cyclic operation, the Duty Factor is the ratio between the time the relay is energized, to the time taken for one cycle (ie the Period). For continuous duty, the $\mathrm{DF}=1$.

Continuous operation: This would represent the condition where the coil is permanently energized, or is energized for at least sufficient time for the relay to reach thermal equilibrium.

Mechanical life: This is derived from a test performed by energising the coils of several relays at 5 to 10 cycles per second without any load applied to the contacts. It establishes the ultimate durability of the relay where electrical wear of the contacts is not an issue. The maximum Electrical Life may therefore approach the Mechanical Life where the electrical loading of the contacts is very small.

Operate time: The typical time (average of values measured supplying the relay coil with the nominal DC voltage) for the NO contact to close, from the point of coil energisation. It does not include the bounce time (see following pattern).

Release time

- For CO relays: The typical time (average of values measured removing from the coil the DC voltage) for the NC contact to close, from the point of coil de-energisation. It does not include the bounce time.
- For NO relays: The typical time (average of values measured removing from the coil the DC voltage) for the NO contact to open, from the point of coil de-energisation. It does not include the bounce time. Note: The release time will increase if a suppression diode in parallel with the coil is employed (either in the form of; a coil protection module; integrated option within the relay; or mounted directly on the pcb).

Bounce time: The typical time duration (average of values measured) while closing contacts bounce, before attaining a stable closed state. Different values generally apply to NO and NC contacts.

T_{A} Operate time
T_{B} Bounce time for NO contact
T_{C} Release Time (NO relays)
${ }^{T}$ Release Time (CO relays)
T_{E} Bounce time for NC contact
Ambient temperature: The temperature of the immediate area where the relay is located. It will not necessarily correspond to the ambient temperature either within, or external to, the enclosure in which the relay is located.
To accurately measure the ambient temperature with respect to the relay, remove the relay from its location whilst maintaining the worst-case energisation of all the other relays and components within the enclosure or panel. Measuring the temperature at the position vacated by the relay will give the true ambient temperature in which the relay is working.

Ambient temperature range: The temperature range over which, operation of the relay is guaranteed (under prescribed conditions).

Storage temperature range: This can be taken as the ambient temperature range, with the upper and lower limits extended by $10^{\circ} \mathrm{C}$.

Environmental protection: according to EN 61810-1
The RT categories describe the degree of sealing of the relay case:

Environmental protection category	Protection
RT O Unenclosed relay	Relay not provided with a protective case.
RT I \quad Dust protected relay	Relay provided with a case, which protects its mechanism from dust.
RT II Flux proof relay	Relay capable of being automatically soldered without allowing the migration of solder fluxes beyond the intended.
RT III Wash tight relay	Relay capable of being automatically soldered and subsequently undergoing a washing process to remove flux residues without allowing the ingress of flux or washing solvents.
Special application categories	
RT IV Sealed relay	Relay provided with a case which has no venting to the outside atmosphere.
RT V Hermetically	Sealed relay having an enhanced level of sealing.

Protection category: according to EN 60529.
The first digit is related to the protection against the intrusion of solid foreign objects into the relay, and also against access to hazardous parts. The second digit relates to the protection against ingress of water. The IP category relates to the relay, when used normally in relay sockets or PC boards.
For sockets, IP20 signifies that the socket is "finger-safe" (VDE0106). IP Examples:
IP $00=$ Not protected .
IP $20=$ Protected against solid foreign objects of $12.5 \mathrm{~mm} \varnothing$ and greater. Not protected against water.
IP $40=$ Protected against solid foreign objects of $1 \mathrm{~mm} \varnothing$ and greater. Not protected against water.
IP 50 = Protected against powder (ingress of dust is not totally prevented, but dust shall not penetrate in a quantity to interfere with satisfactory operation of the relay). Not protected against water.
IP 51 = As IP 50, but with protection against vertically falling drops of water.
IP 54 = As IP 50, but with protection against spayed from all directions - limited ingress permitted.

IP 67 = Totally protected against powder (dust-tight) and protected against the effects of temporary immersion in water.

Vibration resistance: The maximum level of sinusoidal vibration, over the specified frequency range, which can be applied to the relay in the X-axis without the opening (for more than $10 \mu \mathrm{~s}$) of the NO contact (if the coil is energised) or NC contact (if the coil is not energised). (The X-axis is the axis through the plane of the relay face containing the relay terminals). The vibration resistance is usually higher in the energised state, then in the non-energised state. Data for other axes and frequency ranges, on request. The level of vibration is given in terms of the maximum acceleration of the sinusoidal vibration, " g " (where $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$). But note: the normal testing procedure according to IEC 60068-2-6 prescribes to limit the maximum peak-to-peak displacement in the lower range of frequencies.

Shock resistance: The maximum mechanical shock (half-sine 11 ms waveform) permitted in the X-axis without contact opening > $10 \mu \mathrm{~s}$. Data for other axes on request.

Installed orientation: The component's specification is unaffected (unless expressly stated otherwise) by its orientation, (provided it is properly retained, eg by a retaining clip in the case of socket mounted relays.)

Power lost to the environment: The value of the power lost from the relay with the coil energised (without contact current, or with full rated current through all NO contacts). This may be used in the thermal design and regulation of the control panel.

Recommended distance between relays mounted on printed circuit boards: This is the minimum mounting distance suggested when several relays are mounted on the same PC board. Care and consideration shall be given to ensure that other components mounted on the PC board do not heat the relay and raise its microenvironment beyond the permitted maximum ambient temperature.

Torque: The maximum value of torque that can be used for tightening terminal screws, according to EN 60999, is 0.4 Nm for M 2.5 screws, 0.5 Nm for M 3 screws, 0.8 Nm for M 3.5 screws, 1.2 Nm for M4 screws. The test torque is indicated in the catalogue. Normally a 20% increase of this value is acceptable
(각) Both slot-head and cross-head screwdrivers can be used.
Minimum Wire size: For all types of terminal, a minimum cross-section of $0.2 \mathrm{~mm}^{2}$ is permitted.

Max. wire size: Maximum cross-section of cables (solid or stranded wire, without ferrules) that can be connected to each terminal. For use with ferrules, the wire cross-section has to be reduced (e.g. from 4 to $2.5 \mathrm{~mm}^{2}$, from 2.5 to $1.5 \mathrm{~mm}^{2}$, from 1.5 to $1 \mathrm{~mm}^{2}$).

Terminating more than one wire: EN 60204-1 permits 2 or more wires to be terminated in the same terminal. All Finder products are designed in such a way that each terminal can accept 2 or more wires, except screwless terminals.

Box clamp: wires are terminated within a box shaped clamp. Effective retention of solid, stranded and "bootlace" wires, but not suitable for wires terminated with "fork" style terminations.

Plate clamp: wires are terminated under the pressure of a clamp plate. Effective for "fork" terminated wires and solid wire, but less so for stranded wire

to
Screwless terminal (Spring clamp): wires are terminated under the pressure of a spring clamp. The clamp being temporarily held open by the insertion of a tool, while the wire is inserted.

Push-in terminal: similarly to spring clamp terminals, wires are terminated under the pressure of a spring clamp. Solid wires or ferrules can be quickly connected by their simple insertion into the terminal. For stranded wires insertion, and for each wire type extraction, it is necessary first to open the terminal by pushing down on the push-button.

SSR - Solid State Relay

SSR Solid State Relay: A relay utilising semiconductor technology, rather than electromechanical. In particular, the load is switched by a semiconductor and consequently these relays are not subject to burning of contacts and there is no migration of contact material.
SSRs are capable of very high speed switching and virtual unlimited life. However, SSRs for switching DC are polarity sensitive and consideration must given to the maximum permitted blocking voltage.

Opto-coupler: For all SSR relays in the catalogue, the electrical isolation between Input and Output circuits is provided by the use of an opto-coupler.

Switching voltage range: The minimum to maximum (nominal) range for the load voltage. (The maximum value can be extended to cover the normal upper tolerance expected for the load voltage supply.)

Minimum switching current: The minimum value of load current necessary to ensure correct switch-on and switch-off action.

Control current: The nominal value of input current, at $23{ }^{\circ} \mathrm{C}$ and with rated voltage applied.

Maximum blocking voltage: The maximum level of output (load) voltage that the SSR can withstand.

Relay with forcibly guided (mechanically linked) contacts, or safety relay

A relay with forcibly guided contacts is a special type of relay which must satisfy the requirements of a very specific safety EN standard.
Such relays are used within safety systems to guarantee their operational safety and reliability, contributing to a safe working environment.
Such relays must have at least one NO and one NC forcibly guided contact. These contacts must be mechanically linked, such that if one of the contacts fails to open, the other is prevented from closing (and vice versa).
This requirement is fundamental in order to identify with certainty the non-correct operation of a circuit. For example, a failure of a NO contact to open (for example, by welding closed) is identified by the failure of the NC from closing, thereby signaling an operational anomaly. Under such circumstances, the standard requires a guaranteed contact gap of 0.5 mm to be maintained.

EN 50205 is the standard that establishes the requirements for relays with forcibly guided contacts, and it describes two types:

- Type A: where all the contacts are forcibly guided
- Type B: where only some contacts are forcibly guided

According to EN50205, in a relay with changeover contacts, only the NO of one pole and the NC of the other pole can be considered as forcibly guided contacts. In the case of the 50 series relay this means the remaining poles cannot be considered as forcibly guided and therefore this relay is categorised as "Type B".
However, since the 7 S relay series offer only NO and NC contacts they can be categorized as "Type A".

Monitoring and Measuring relays

Supply voltage monitoring: The supply voltage being monitored also provides the operating power for the unit, so an auxiliary supply is not necessary. (Not applicable to the Universal voltage monitoring relay 71.41)

3 -phase asymmetry monitoring: In a 3-phase system, asymmetry is present if at least one of the three $\mathrm{L}-\mathrm{L}$ voltage vectors fails to be at 120° with respect to the other $L-L$ voltage vectors.

Detection level: For monitoring relays, this represents, either fixed or adjustable level(s) of voltage, current or phase asymmetry, which define the acceptable limits of operation. Values outside acceptable limits will cause the output relay NO contact to open (after any intentional delay).

Switch-on lock-out time: for over and under voltage monitoring relays this is a selectable time delay to ensure that the output relay cannot re-energise too quickly (following a trip and the reestablishment of healthy conditions). Protects equipment where a quick succession of restarts might cause overheating and damage. Same delay applies immediately following "power-on".

Start delay (T2): Current monitoring relay 71.51; immediately on the detection of current flow (following a period of no current flow) "out of limits" current detection is inhibited for time period T2. Useful for ignoring inrush currents that commonly occur at switch-on of sodium lamps or motors etc.

Switch-off time: This refers to the time taken for the output relay to de-energise, following the detection of conditions requiring this. Depending on the particular monitoring relay, a short time may be demanded (ie. <0.5 secs -72.31), or in the case of the 71.41 a longer delay may be preferred (ie, variable 0.1 to 12 secs). In the case of the latter, this delay is useful for ignoring momentary or short-term excursions of the measured/monitored value outside of limits.

Trip on-delay: Similar in effect to the switch-off delay, this delays the "rrip" signal that would result in the output relay switching off. The term is used primarily for monitoring relays which monitor and act according to several parameters. But the effect is the same, and momentary or short-term excursions of the measured/monitored values outside of limits are ignored.

Run-on time: With liquid level control relays the pump motor can be turned on (or off) within 0.5 to 1 second of the liquid reaching or departing the level of the electrode. Depending on model, this delay can be increased up to 7 seconds, which will have the effect of the liquid level running past the electrode level. This can help prevent "hunting" of the motor, which might otherwise have happened due to ripples, or foam, on the surface of the liquid.

Reaction time: For monitoring relays, this is the maximum time taken by the electronics to respond to changes in the monitored value.

Fault memory: For monitoring relays; selecting this function will inhibit the automatic reset following clearing of fault condition. Reset can only be made by positive intervention.

Fault memory - status retained on power down: As above but the fault memory status will be retained during power down.

Switch-ON hysteresis: For monitoring relays type 71.41 and 71.51, the switch-on level can be off-set from the set level by a (hystereis) percentage. The desired percentage can be selected during relay set-up.

Thermistor temperature sensing: Over-temperature monitoring via a PTC resistance sensor, with in-built checking for sensor open or short circuit faults.

Level control relay: Detects the level of conductive liquids by measuring and evaluating the resistance between either 2 or 3 level electrodes.

Electrode voltage: For level control relays, this is the nominal voltage between electrodes. Note: this voltage is an alternating voltage, so as to avoid the effects of electrolytic corrosion.

Electrode current: For level control relays, this is the nominal (AC) electrode current.

Max. sensitivity: For level control relays: the maximum sensitivity is the maximum resistance between the electrodes that will be recognised as indicating the presence of liquid. This may be fixed, or adjustable over a range - according to type.

Sensitivity, fixed or adjustable: The resistance value between the electrodes $\mathrm{B} 1-\mathrm{B} 3$ and $\mathrm{B} 2-\mathrm{B} 3$ is used to determine if there is a conductive liquid between the electrodes. The sensitivity is either a fixed level (type 72.11) or an adjustable value (type 72.01). The latter is useful for "tuning out" any false detection of the fluid level arising from detecting surface foam (or head), rather than the liquid itself.

Positive safety logic: Positive logic means that the make contact is closed, if the level or parameter which is being monitored lies within the target range. The make contact opens, after a delay if appropriate, if the level falls outside of the target range, or level.

Timers

Specified time range: the minimum and maximum limits of, one or more time ranges, over which it is possible to set the desired time.

Repeatability: The difference between the upper and lower limits of a range of values taken from several time measurements of a specified time relay under identical stated conditions. Usually repeatability is indicated as a percentage of the mean value of all measured values.

Recovery time: The minimum time necessary before re-starting the timer function - in order to maintain the defined timing accuracy.

Minimum control impulse: The minimum duration of a control impulse (Terminal B1) necessary to ensure the complete and proper time function.

Setting accuracy: The difference between the measured value of the specified time and the reference value set on the scale.

Light dependent relays

Threshold setting: The ambient light level setting, measured in lux $(\mid x)$, at which the output relay switches on (following the elapse of the ON Delay time). This is adjustable over the range specified in the specification. The relay will switch off, dependent upon the type of Light dependent relay used, at either the same or a higher brightness value (following the elapse of the OFF Delay time).

Delay time: switching ON/OFF For light-dependent relays this is an intentional delay in the response of the output relay, following a change of state within the electronic light sensitive circuit (usually indicated by change of state of an LED).
This is to eliminate the possibility of the output relay unnecessarily responding to a momentary change in ambient light level.

Time switches

1 or 2 pole output types: The 2 pole output type (12.22) can have both contacts programmed independently of each other.

Type of time switch:

Daily The programmed operational sequence of the time switch repeats itself daily.
Weekly The programmed operational sequence of the time switch repeats itself weekly.

Programs: For electronic digital time switches, this is the maximum number of switching times that can be stored in memory. A switching time can be used for more than one day (ie. It could apply to Mon, Tues, Wed, Thurs and Friday), but will only use one memory location.
For mechanical daily time switches, this is the maximum number of switching points during the day that can be set.

Minimum interval setting: For time switches, this it is the minimum time interval that can be programmed.

Power back-up: The time, following a power failure, over which the time switch will retain the stored programs and the elapsed time information.

Step relays and staircase timers

Minimum/Maximum impulse duration: For step relays there is a minimum and a maximum time period for coil energisation. The former is necessary to ensure a full and complete mechanical step action, while exceeding the latter would result in coil overheating and damage.
With the electronic staircase timer, there is no limit to the maximum time for impulse duration.

Max. number of illuminated push-buttons: For step relays and staircase switches, this is the maximum number of illuminated push-buttons (having current absorption < 1mA @ 230 VAC) that can be connected without causing problems. If the push-button consumption is higher than 1 mA , the maximum number of push-buttons allowed is proportionally reduced. (ie. 15 push-buttons $\times 1 \mathrm{~mA}$ is equivalent to 10 push-buttons $\times 1.5 \mathrm{~mA}$).

Glow wire conformity according to EN 60335-1
European standard EN 60335-1:2002, "Household and similar electrical appliances - Safery - Part 1: General requirements"; Paragraph 30.2.3 prescribes that insulated parts supporting connections that carry current exceeding 0.2 A (and the insulated parts within a distance of 3 mm from them), must comply with the following 2 requirements with respect to resistance to fire:

1. GWFI (Glow Wire Flammability Index) of $850^{\circ} \mathrm{C}$ - Compliance with glow wire flammability test at $850^{\circ} \mathrm{C}$ (according to EN 60695-2-12: 2001).
2. GWIT (Glow Wire Ignition Temperature) of $775^{\circ} \mathrm{C}$ according to EN 60695-2-13:2001 - This requirement can be verified with a GWT (Glow Wire Test according to EN 60695-2-1 : 2001) at a value of $750^{\circ} \mathrm{C}$ with a flame extinction within 2 seconds.

The following Finder products comply with the above mentioned requirements;

- electromechanical relays of series $34,40,41,43,44,45,46$,

50, 55, 56, 60, 62, 65, 66

- PCB socket types 93.11, 95.13.2, 95.15.2, 95.23.

Important note: Whilst EN 60335-1 permits the application of an alternative needle flame test lif the flame during test no. 2 burns longer than 2 seconds) this can result in some limitation in the relay's mounting position. Finder products however, have no such limitations, since the materials used do not require the alternative test method to be performed.

EMC (ElectroMagnetic Compatibility) Standards

Type of test	Reference standard
Electrostatic discharge	EN 61000-4-2
Radio-frequency electromagnetic	
field $(80 \div 1,000 \mathrm{MHz})$	EN 61000-4-3
Fast transients (burst) $(5-50 \mathrm{~ns}, 5 \mathrm{kHz})$	EN 61000-4-4
Surges $(1.2 / 50 \mu \mathrm{ss})$	EN 61000-4-5
Radio-frequency common mode	
disturbances $(0.15 \div 80 \mathrm{MHz})$	EN 61000-4-6
Power-frequency magnetic field $(50 \mathrm{~Hz})$	EN 61000-4-8
Radiated and conducted emission	EN 55011/55014 /
	55022

In panel installations, the most frequent and, particularly, more dangerous type of electrical disturbances are the following:

1. Burst (fast transients). These are packets of $5 / 50 \mathrm{~ns}$ pulses, having high peak voltage level but low energy since individual pulses are very short -5 ns rise time (5×10^{-9} seconds) and 50 ns fall time.
They simulate the disturbances that can spread along the cables as a consequence of commutation transients from relays, contactors or motors. Usually they are not destructive, but they can affect the correct working of electronic devices.

2. Surge (voltage pulses). These are single $1.2 / 50 \mu \mathrm{~s}$ pulses, with energy much higher than bursts since the duration is considerably longer - 1.2 μ s rise time (1.2×10^{6} seconds) and 50μ s fall time.
For this reason they are very often destructive. The Surge test typically simulates disturbances caused by the propagation of atmospheric electrical storm discharges along electrical lines, but often the switching of power contacts (such as the opening of highly inductive loads) can cause disturbances that are very similar, and equally destructive. The test levels \mathbf{V} (peak values of the single pulses) are prescribed in appropriate product standards:
EN 61812-1 for electronic timers;
EN 60669-2-1 for electronic relays and switches;

EN 61000-6-2 Igeneric standard for immunity in the industrial environment) for other electronic products for industrial application; EN 61000-6-1 (generic standard for immunity in the domestic environment) for other electronic products for domestic application. Finder electronic products are in accordance with European EMC Directive 2004/108/EC and indeed, have immunity capabilities often higher than the levels prescribed in the above mentioned standards. Nevertheless, it is not impossible that some working environments may impose levels of disturbances far in excess of the guaranteed levels, such that the product could be immediately destroyed!
It is therefore necessary to consider Finder products as not being indestructible under all circumstances. The user should pay attention to the disturbances in electrical systems and reduce as much as possible these disturbances. For example, employ arc suppression circuits on the contacts of switches, relays or contactors which otherwise might produce over-voltages when opening electrical circuits (particularly highly inductive or DC loads). Attention should also be paid to the placement of components and cables in such a way as to limit disturbances and their propagation.

EMC rules: Require that it is the equipment designer who must ensure that the emissions from panels or equipment does not exceed the limits stated in EN 61000-6-3 (generic standard for emission in the domestic environment) or 61000-6-4 (generic standard for emission in the industrial environment) or any product specific harmonised EMC standard.

Reliability (MTTF \& MTBF for equipment)

MTTF - Mean Time To Failure: The predominant failure mode for elementary relays is attributable to the wear-out mechanism affecting the relay's contacts. This can be expressed in terms of MCTF (Mean Cycles To Failure).
With knowledge of the frequency of operation (cycling rate) of the relay within the equipment, the number of cycles can be simply transformed into a respective time, giving the effective MTTF value for the relay in that application. See B10 description below for information on how to estimate the MCTF for Finder relays.

MTBF - Mean Time Between Failures Relays are generally considered to be non-repairable items and consequently would require replacement following failure. Consequently, if a worn relay within equipment were replaced, its MTTF value would be appropriate in calculating the MTBF (Mean Time Between Failure) for the equipment.
B_{10} - Statistical 10\% fractile of lifetime: The electrical contact life for a Finder relay, as indicated by its associated "F" chart, can be taken as the relay's B_{10} statistical life figure. This being the expected time at which 10% of the population will fail. There is a relationship between it and the MCTF value, and generally for a Finder relay this is approximately $M C T F=1.4 \times \mathrm{B}_{10}$. See Electrical life "F-chart" section for more information.

The RoHS \& WEEE directives

Recent directives approved by the European Union aim to reduce potentially hazardous substances contained in electrical and electronic equipment - minimising risks to health and the environment, and guaranteeing the safe reuse, recycling or ultimate disposal of equipment.

RoHS Directive

As of 1 July, 2006, European directive 2002/95/CE dated 27 January 2003 (known as the RoHS directive - "Restriction of Hazardous Substances") and its amendments 2005/618/EC, 2005/717/EC, 2005/747/EC limits the use of substances, considered potentially damaging to human health if contained in electrical and electronic equipment. Restricted materials:

- Lead
- Mercury
- Hexavalent chromium
- PBB (Polybromide biphenyl)
- PBDE (Polybromide diphenyl ether)
- Cadmium (With certain exceptions, including contact materials)

Scope of applications subject to the RoHS \& WEEE directives
Categories of electrical and electronic equipment covered by the directives

- Large household appliances
- Small household appliances
- IT and telecommunications equipment
- Consumer equipment
- Lighting equipment
- Electrical and electronic tools
(with the exception of large-scale stationary industrial tools)
- Toys, leisure and sports equipment
- Automatic dispensers
- (WEEE only) Medical devices
(with the exception of all implanted and infected products)
- (WEEE only) Monitoring and control instruments
(for example control panels)

Conformance of Finder products to the RoHS directive

Following a transitional period from December 2004 to June 2006, all Finder products manufactured since the latter date are fully RoHS complaint.

CADMIUM

Following the European Commission decision 2005/747/EC dated 21 st October 2005, cadmium and its compounds are now permitted in electrical contacts. Consequently, relays with AgCdO contacts are acceptable in all applications. However, if required, the majority of Finder relays are currently available in "Cadmium-free" versions (for example, AgNi or AgSnO_{2}). But, it should be noted that AgCdO achieves a particularly good balance between the electrical life and the switching capacity of, for example, solenoids and inductive loads in general (particularly DC loads), motor loads and higher power resistive loads. Alternative materials such as AgNi and AgSnO_{2}, do not always offer the same performance for electrical life as AgCdO , although this depends on both the type of load and application (see Table 5 under Contact specification section).

WEEE directive

European directive 2002/96/CE dated 27 January 2003 (known as the WEEE directive - "Waste Electrical and Electronic Equipment") contains measures and strategies for the safe and environmentally sound disposal of waste derived from electrical equipment. (This directive is not directly applicable to Finder products as it applies to equipment, rather than components).

S I L and P L categories

S I L and P L categories relate to the statistical reliability of Safety Related Electrical Control Systems (SRECS), and not directly to components, such as relays, used in such systems.

It is therefore not possible, or appropriate, to quote a PL or SIL class against a relay. SIL and PL categories relate only to the SRECS and can only be calculated by the system designer.

However, the following section may be useful for those engineers incorporating Finder relays into SRECS systems.
S I L Classes - according to EN 61508
EN 61508:2 describes the requirements for security of Safery Related Electrical/electronic/programmable Control Systems (SRECS). It is a "sector independent" wide ranging standard - describing some 350 aspects that need to be considered in order to define the safety and performance required from such as system.

The S I L (Safety Integrity Level) classifies, as one of 4 classes (SIL 0 to SIL 3), the dangers and risks that would be consequential to a particular application malfunctioning. This in furn generates the need for any associated SRECS to perform with an appropriate level of reliability. Applications, where the consequences of a failure of the control system are assessed as low (SIL 0) can tolerate a relatively high statistical probability of a control system failure occurring.
Conversely, applications where the dangerous consequences of a failure of the control system are assessed as very high (SIL 3) cannot tolerate anything other than a control system with the highest (statistically assured) reliability.
The reliability of the (overall) control system is specified in terms of the "Statistical probability of a dangerous system failure per hour".
Note: EN61508 is not a prescribed standard under the EU Machinery Directive because it is primarily intended for complex systems such as chemical plants and power stations, or for use as a generic standard for other applications.

P L Classes - according to EN 13849-1

EN 13849-1 is specifically intended to cover machines and process plant.
Similar to EN 61508, this standard, classifies the danger and risks into one of five PL (Performance Level) classes. Described against each class is the required reliability for the (overall) control system, defined in terms of "statistical probability of a dangerous system failure per hour".

Points of commonality between EN 61508 and EN13849-1

The numeric values for the "statistical probability of a dangerous fault per hour" are to a large extent the same for EN 61508 and EN13849-1. SIL 1 corresponds to PL B \& C, SIL 2 corresponds to PL D and SIL 3 corresponds to PL E.
Both EU standards define the statistical probability of a SERCS failure, and not the failure of a component. It is the responsibility of the system designer to ensure that a failure of a component does not compromise the required safety integrity of the system.

IEC EN 61508 (Safety Integrity Level)	Statistical probability of a dangerous system failure per hour"	EN 13849-1 (Performance Level)
No special safety requirements	$\geq 10^{-5} \ldots<10^{-4}$	A
1	$\geq 3 \times 10^{-6} \ldots<10^{-5}$	B
	$\geq 10^{-6} \ldots<3 \times 10^{-6}$	C
	$\geq 10^{-7} \ldots<10^{-6}$	D
	$\geq 10^{-8} \ldots<10^{-7}$	E

Component reliability

The safety control system designer needs to take into account the reliability of components. Accordingly, the most predictable failure for a relay is contact wear-out at moderate to high contact loading. But, as relay reliability standard EN 61810-2:2005 emphasises, relays are not repairable, and this in particular needs to be taken into account when estimating the "statistical probability of a dangerous system failure per hour". See Reliability section.

Summary

- S I L and P L categorisation applies to systems and not to components.
- PL classes apply to machines and process plant, while SIL classes relate to more complex systems.
- EN 13849, with PL classifications, is expected to take effect from 2009 and will be mandatory, and as a consequence, component manufacturers will need to provide reliability data
- For relays, the number of switching cycles before failure is predominantly determined by the life of the contacts, and consequently is dependent upon contact loading. The F-diagrams in the Finder catalogue can be regarded as indicating the B_{10} value of a Weibull type distribution of electrical life (for a $230 \mathrm{VAC1}$ load); from which the MCTF can be derived and used ultimately in calculating the "statistical probability of a dangerous system failure per hour" for the safety control system.

Certifications and Quality Approvals

[^0]: * Note: all technical data relates to using the relay directly on PCB or PCB socket type 93.11.

 If the relay is used with 35 mm rail socket type 93.51 , refer to the technical data of 38 Series; if used with types $93.60,93.61,93.62,93.63$, $93.64,93.65,93.66,93.67,93.68$ and 93.69, refer to the technical data of the MasterINTERFACE 39 Series.

[^1]: Option = 34.51.7xxx.x019

[^2]: ** See general technical information "Guidelines for automatic flow solder processes" page II

[^3]: ** See general technical information "Guidelines for automatic flow solder processes" page II.

[^4]: * Modules in Black housing are available on request.

 Green LED is standard. Red LED available on request.

[^5]: Sheet of marker tags for $38 . \times 2$, plastic, 72 tags, $6 \times 12 \mathrm{~mm} \mid 060.72$

[^6]: EH[PG c $\mathrm{HI}_{\text {us }}$

 DC Modules with non-standard polarity (+A2) on request.

[^7]: * Special version with $\mathrm{U}_{\text {min }}=70 \% \mathrm{U}_{\mathrm{N}}$

[^8]: 1 - Max. permitted coil voltage.
 2 - Min. pick-up voltage with coil at ambient temperature.

[^9]: * with overvoltage category II: Full-disconnection

[^10]: : 2 Pole 8 A

[^11]: 1-Max. permitted coil voltage.
 2 - Min. pick-up voltage with coil at ambient temperature.

[^12]: 1 - Max. permitted coil voltage
 2 - Min. pick-up voltage with coil at ambient temperature.

[^13]: * The function "with Memory" is only available for type 70.11, 70.42 and 70.31 .
 **It is necessary to switch the supply OFF and then On again (U off U on) or to rotate the function selector first to an adjacent position and then to the original position.

[^14]: * There is no electrical isolation between electrodes and supply voltage for the 24 V DC types (72.x1.9.024.0000). Therefore, for SELV applications it would be necessary to use a SELV (non-grounded) power supply. In the case of a PELV (grounded) power supply take care to protect the level control relay against harmful circulating currents by ensuring that no electrodes are grounded.
 However, there is no such problem for the $24 \vee \mathrm{AC}$ types ($72 . \times 1.8 .024 .0000$) which, by virtue of an internal isolating transformer, assure reinforced isolation between electrodes and supply.

[^15]: * To adjust the current transformer ratio remove the bridge Z1-Z2 and reset the energy meter according to the operating instructions. Then lock it again with the bridge. For a tamper proof lead seal use four terminal covers (07E.16).

[^16]: Approvals (according to type)

[^17]: Note: suggested RCD type S

[^18]: * input fuse may blow for surges higher than 1.5 kV
 ** input fuse may blow for surges higher than 2 kV

[^19]: ** A voltage other than the supply voltage can be applied to the control signal (B1), example:
 $\mathrm{A} 1-\mathrm{A} 2=230 \mathrm{~V}$ AC
 $\mathrm{B} 1-\mathrm{A} 2=12 \mathrm{~V} \mathrm{DC}$

[^20]: Power-off mode
 If the 230 V AC supply is not connected, the relay enters power-off mode and to ensure the long life of the built-in back-up battery only the clock is maintained active. The display turns off and no other operation (including light measurement) is performed.
 With a press to the joystick during power-off mode it is possible to "awaken" the device and to enter program or set-up mode (the"electrical plug" symbol is displayed); after about 1 minute inactivity the power-off mode is resumed. Note: with the supply not connected, the program or set-up modes absorb a higher current than the power-off mode, thus influencing the battery life.

